Skip to main content
Solve for d
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\left(x+y\right)\frac{\mathrm{d}(y)}{\mathrm{d}x}=\left(2x+y\right)dy
Multiply both sides of the equation by x+y.
x\frac{\mathrm{d}(y)}{\mathrm{d}x}+y\frac{\mathrm{d}(y)}{\mathrm{d}x}=\left(2x+y\right)dy
Use the distributive property to multiply x+y by \frac{\mathrm{d}(y)}{\mathrm{d}x}.
x\frac{\mathrm{d}(y)}{\mathrm{d}x}+y\frac{\mathrm{d}(y)}{\mathrm{d}x}=\left(2xd+yd\right)y
Use the distributive property to multiply 2x+y by d.
x\frac{\mathrm{d}(y)}{\mathrm{d}x}+y\frac{\mathrm{d}(y)}{\mathrm{d}x}=2xdy+dy^{2}
Use the distributive property to multiply 2xd+yd by y.
2xdy+dy^{2}=x\frac{\mathrm{d}(y)}{\mathrm{d}x}+y\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
\left(2xy+y^{2}\right)d=x\frac{\mathrm{d}(y)}{\mathrm{d}x}+y\frac{\mathrm{d}(y)}{\mathrm{d}x}
Combine all terms containing d.
\left(2xy+y^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by 2xy+y^{2}.