\frac { d y } { d x } + p ( x ) y = d x
Solve for d (complex solution)
\left\{\begin{matrix}\\d=py\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{d}{y}\text{, }&y\neq 0\\p\in \mathrm{C}\text{, }&x=0\text{ or }\left(d=0\text{ and }y=0\right)\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=py\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{d}{y}\text{, }&y\neq 0\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&\left(d=0\text{ and }y=0\right)\text{ or }x=0\end{matrix}\right.
Share
Copied to clipboard
dx=\frac{\mathrm{d}(y)}{\mathrm{d}x}+pxy
Swap sides so that all variable terms are on the left hand side.
xd=pxy
The equation is in standard form.
\frac{xd}{x}=\frac{pxy}{x}
Divide both sides by x.
d=\frac{pxy}{x}
Dividing by x undoes the multiplication by x.
d=py
Divide pxy by x.
pxy=dx-\frac{\mathrm{d}(y)}{\mathrm{d}x}
Subtract \frac{\mathrm{d}(y)}{\mathrm{d}x} from both sides.
xyp=dx
The equation is in standard form.
\frac{xyp}{xy}=\frac{dx}{xy}
Divide both sides by xy.
p=\frac{dx}{xy}
Dividing by xy undoes the multiplication by xy.
p=\frac{d}{y}
Divide dx by xy.
dx=\frac{\mathrm{d}(y)}{\mathrm{d}x}+pxy
Swap sides so that all variable terms are on the left hand side.
xd=pxy
The equation is in standard form.
\frac{xd}{x}=\frac{pxy}{x}
Divide both sides by x.
d=\frac{pxy}{x}
Dividing by x undoes the multiplication by x.
d=py
Divide pxy by x.
pxy=dx-\frac{\mathrm{d}(y)}{\mathrm{d}x}
Subtract \frac{\mathrm{d}(y)}{\mathrm{d}x} from both sides.
xyp=dx
The equation is in standard form.
\frac{xyp}{xy}=\frac{dx}{xy}
Divide both sides by xy.
p=\frac{dx}{xy}
Dividing by xy undoes the multiplication by xy.
p=\frac{d}{y}
Divide dx by xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}