Solve for Q
\left\{\begin{matrix}Q=py^{3}\text{, }&x\neq 0\text{ and }y\neq 0\\Q\in \mathrm{R}\text{, }&x=0\text{ and }y\neq 0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{Q}{y^{3}}\text{, }&x\neq 0\text{ and }y\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }y\neq 0\end{matrix}\right.
Share
Copied to clipboard
y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+pxyy^{2}=Qx
Multiply both sides of the equation by y^{2}.
y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+pxy^{3}=Qx
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
Qx=y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+pxy^{3}
Swap sides so that all variable terms are on the left hand side.
xQ=pxy^{3}
The equation is in standard form.
\frac{xQ}{x}=\frac{pxy^{3}}{x}
Divide both sides by x.
Q=\frac{pxy^{3}}{x}
Dividing by x undoes the multiplication by x.
Q=py^{3}
Divide pxy^{3} by x.
y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+pxyy^{2}=Qx
Multiply both sides of the equation by y^{2}.
y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+pxy^{3}=Qx
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
pxy^{3}=Qx-y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)
Subtract y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y) from both sides.
pxy^{3}=-y^{2}\frac{\mathrm{d}}{\mathrm{d}x}(y)+Qx
Reorder the terms.
xy^{3}p=Qx
The equation is in standard form.
\frac{xy^{3}p}{xy^{3}}=\frac{Qx}{xy^{3}}
Divide both sides by xy^{3}.
p=\frac{Qx}{xy^{3}}
Dividing by xy^{3} undoes the multiplication by xy^{3}.
p=\frac{Q}{y^{3}}
Divide Qx by xy^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}