Solve for P
\left\{\begin{matrix}P=Qy^{n-1}\text{, }&x\neq 0\text{ and }\left(Denominator(n)\text{bmod}2=1\text{ or }y>0\right)\text{ and }y\neq 0\\P\in \mathrm{R}\text{, }&\left(x=0\text{ and }y>0\right)\text{ or }\left(x=0\text{ and }y<0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(y=0\text{ and }n>0\right)\end{matrix}\right.
Solve for Q
\left\{\begin{matrix}Q=Py^{1-n}\text{, }&x\neq 0\text{ and }\left(Denominator(n)\text{bmod}2=1\text{ or }y>0\right)\text{ and }y\neq 0\\Q\in \mathrm{R}\text{, }&\left(x=0\text{ and }y>0\right)\text{ or }\left(x=0\text{ and }y<0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(y=0\text{ and }n>0\right)\end{matrix}\right.
Share
Copied to clipboard
Pxy=Qxy^{n}-\frac{\mathrm{d}}{\mathrm{d}x}(y)
Subtract \frac{\mathrm{d}}{\mathrm{d}x}(y) from both sides.
xyP=Qxy^{n}
The equation is in standard form.
\frac{xyP}{xy}=\frac{Qxy^{n}}{xy}
Divide both sides by xy.
P=\frac{Qxy^{n}}{xy}
Dividing by xy undoes the multiplication by xy.
P=Qy^{n-1}
Divide Qxy^{n} by xy.
Qxy^{n}=\frac{\mathrm{d}}{\mathrm{d}x}(y)+Pxy
Swap sides so that all variable terms are on the left hand side.
xy^{n}Q=Pxy
The equation is in standard form.
\frac{xy^{n}Q}{xy^{n}}=\frac{Pxy}{xy^{n}}
Divide both sides by xy^{n}.
Q=\frac{Pxy}{xy^{n}}
Dividing by xy^{n} undoes the multiplication by xy^{n}.
Q=Py^{1-n}
Divide Pxy by xy^{n}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}