\frac { d y } { d } ( \frac { x ^ { 2 } } { 1 + x ^ { 3 } } ) = 0
Solve for d
d\neq 0
x=0\text{ or }\left(y=0\text{ and }x\neq -1\text{ and }d\neq 0\right)
Solve for x
\left\{\begin{matrix}x=0\text{, }&d\neq 0\\x\neq -1\text{, }&y=0\text{ and }d\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x^{3}+1\right)dy\times \frac{x^{2}}{1+x^{3}}=0
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by d\left(x+1\right)\left(x^{2}-x+1\right), the least common multiple of d,1+x^{3}.
\frac{\left(x^{3}+1\right)x^{2}}{1+x^{3}}dy=0
Express \left(x^{3}+1\right)\times \frac{x^{2}}{1+x^{3}} as a single fraction.
x^{2}dy=0
Cancel out x^{3}+1 in both numerator and denominator.
yx^{2}d=0
The equation is in standard form.
d=0
Divide 0 by x^{2}y.
d\in \emptyset
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}