\frac { d x } { x } = k d t
Solve for d (complex solution)
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&k=\frac{1}{t}\text{ and }t\neq 0\text{ and }x\neq 0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{1}{t}\text{, }&t\neq 0\text{ and }x\neq 0\\k\in \mathrm{C}\text{, }&d=0\text{ and }x\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&k=\frac{1}{t}\text{ and }t\neq 0\text{ and }x\neq 0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{1}{t}\text{, }&t\neq 0\text{ and }x\neq 0\\k\in \mathrm{R}\text{, }&d=0\text{ and }x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
dx=kdtx
Multiply both sides of the equation by x.
dx-kdtx=0
Subtract kdtx from both sides.
-dktx+dx=0
Reorder the terms.
\left(-ktx+x\right)d=0
Combine all terms containing d.
\left(x-ktx\right)d=0
The equation is in standard form.
d=0
Divide 0 by -ktx+x.
dx=kdtx
Multiply both sides of the equation by x.
kdtx=dx
Swap sides so that all variable terms are on the left hand side.
dtxk=dx
The equation is in standard form.
\frac{dtxk}{dtx}=\frac{dx}{dtx}
Divide both sides by dtx.
k=\frac{dx}{dtx}
Dividing by dtx undoes the multiplication by dtx.
k=\frac{1}{t}
Divide dx by dtx.
dx=kdtx
Multiply both sides of the equation by x.
dx-kdtx=0
Subtract kdtx from both sides.
-dktx+dx=0
Reorder the terms.
\left(-ktx+x\right)d=0
Combine all terms containing d.
\left(x-ktx\right)d=0
The equation is in standard form.
d=0
Divide 0 by -ktx+x.
dx=kdtx
Multiply both sides of the equation by x.
kdtx=dx
Swap sides so that all variable terms are on the left hand side.
dtxk=dx
The equation is in standard form.
\frac{dtxk}{dtx}=\frac{dx}{dtx}
Divide both sides by dtx.
k=\frac{dx}{dtx}
Dividing by dtx undoes the multiplication by dtx.
k=\frac{1}{t}
Divide dx by dtx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}