\frac { d x } { x ^ { 2 } - x y + y ^ { 2 } } = \frac { d y } { 2 y ^ { 2 } - x y }
Solve for d
\left\{\begin{matrix}d=0\text{, }&y\neq 0\text{ and }x\neq 2y\\d\in \mathrm{R}\text{, }&\left(x=\frac{y}{2}\text{ or }x=y\right)\text{ and }y\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=y\text{; }x=\frac{y}{2}\text{, }&y\neq 0\\x\neq 2y\text{, }&d=0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
-y\left(x-2y\right)dx=\left(x^{2}-xy+y^{2}\right)dy
Multiply both sides of the equation by y\left(x-2y\right)\left(-x^{2}+xy-y^{2}\right), the least common multiple of x^{2}-xy+y^{2},2y^{2}-xy.
\left(-yx+2y^{2}\right)dx=\left(x^{2}-xy+y^{2}\right)dy
Use the distributive property to multiply -y by x-2y.
\left(-yxd+2y^{2}d\right)x=\left(x^{2}-xy+y^{2}\right)dy
Use the distributive property to multiply -yx+2y^{2} by d.
-ydx^{2}+2y^{2}dx=\left(x^{2}-xy+y^{2}\right)dy
Use the distributive property to multiply -yxd+2y^{2}d by x.
-ydx^{2}+2y^{2}dx=\left(x^{2}d-xyd+y^{2}d\right)y
Use the distributive property to multiply x^{2}-xy+y^{2} by d.
-ydx^{2}+2y^{2}dx=x^{2}dy-xdy^{2}+dy^{3}
Use the distributive property to multiply x^{2}d-xyd+y^{2}d by y.
-ydx^{2}+2y^{2}dx-x^{2}dy=-xdy^{2}+dy^{3}
Subtract x^{2}dy from both sides.
-2ydx^{2}+2y^{2}dx=-xdy^{2}+dy^{3}
Combine -ydx^{2} and -x^{2}dy to get -2ydx^{2}.
-2ydx^{2}+2y^{2}dx+xdy^{2}=dy^{3}
Add xdy^{2} to both sides.
-2ydx^{2}+3y^{2}dx=dy^{3}
Combine 2y^{2}dx and xdy^{2} to get 3y^{2}dx.
-2ydx^{2}+3y^{2}dx-dy^{3}=0
Subtract dy^{3} from both sides.
3dxy^{2}-dy^{3}-2dyx^{2}=0
Reorder the terms.
\left(3xy^{2}-y^{3}-2yx^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by 3xy^{2}-y^{3}-2yx^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}