Skip to main content
Solve for d
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-y\left(x-2y\right)dx=\left(x^{2}-xy+y^{2}\right)dy
Multiply both sides of the equation by y\left(x-2y\right)\left(-x^{2}+xy-y^{2}\right), the least common multiple of x^{2}-xy+y^{2},2y^{2}-xy.
\left(-yx+2y^{2}\right)dx=\left(x^{2}-xy+y^{2}\right)dy
Use the distributive property to multiply -y by x-2y.
\left(-yxd+2y^{2}d\right)x=\left(x^{2}-xy+y^{2}\right)dy
Use the distributive property to multiply -yx+2y^{2} by d.
-ydx^{2}+2y^{2}dx=\left(x^{2}-xy+y^{2}\right)dy
Use the distributive property to multiply -yxd+2y^{2}d by x.
-ydx^{2}+2y^{2}dx=\left(x^{2}d-xyd+y^{2}d\right)y
Use the distributive property to multiply x^{2}-xy+y^{2} by d.
-ydx^{2}+2y^{2}dx=x^{2}dy-xdy^{2}+dy^{3}
Use the distributive property to multiply x^{2}d-xyd+y^{2}d by y.
-ydx^{2}+2y^{2}dx-x^{2}dy=-xdy^{2}+dy^{3}
Subtract x^{2}dy from both sides.
-2ydx^{2}+2y^{2}dx=-xdy^{2}+dy^{3}
Combine -ydx^{2} and -x^{2}dy to get -2ydx^{2}.
-2ydx^{2}+2y^{2}dx+xdy^{2}=dy^{3}
Add xdy^{2} to both sides.
-2ydx^{2}+3y^{2}dx=dy^{3}
Combine 2y^{2}dx and xdy^{2} to get 3y^{2}dx.
-2ydx^{2}+3y^{2}dx-dy^{3}=0
Subtract dy^{3} from both sides.
3dxy^{2}-dy^{3}-2dyx^{2}=0
Reorder the terms.
\left(3xy^{2}-y^{3}-2yx^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by 3xy^{2}-y^{3}-2yx^{2}.