Solve for x
x=ArcCosI(2y^{-1})+2\pi n_{9}\text{, }n_{9}\in \mathrm{Z}\text{, }\left(not(y<2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(y>2\left(SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{4}\right))\right)^{-1}\text{ and }not(n_{4}>1+2n_{9})\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)\text{ or }\left(not(|y|<2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(y>2\left(SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{4}\right))\right)^{-1}\text{ and }not(n_{4}>1+2n_{9})\text{ and }y<2\left(SinI(\left(-\frac{1}{2}\right)\pi +\left(-1\right)n_{4}\pi )\right)^{-1}\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)\text{ or }\left(not(|y|<2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(y>2\left(SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{4}\right))\right)^{-1}\text{ and }not(n_{4}>1+2n_{9})\text{ and }y>2\left(SinI(\left(-\frac{1}{2}\right)\pi +\left(-1\right)n_{4}\pi )\right)^{-1}\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{23}\in \mathrm{Z}\text{ : }n_{4}=-1+\left(-2\right)n_{23}\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)\text{ or }\left(not(|y|<2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(y<2\left(SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{4}\right))\right)^{-1}\text{ and }\exists n_{13}\in \mathrm{Z}\text{ : }n_{4}=1+\left(-2\right)n_{13}\text{ and }not(n_{4}>1+2n_{9})\text{ and }y<2\left(SinI(\left(-\frac{1}{2}\right)\pi +\left(-1\right)n_{4}\pi )\right)^{-1}\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)\text{ or }\left(not(|y|<2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(y<2\left(SinI(\frac{1}{2}\pi \left(1+\left(-2\right)n_{4}\right))\right)^{-1}\text{ and }\exists n_{13}\in \mathrm{Z}\text{ : }n_{4}=1+\left(-2\right)n_{13}\text{ and }not(n_{4}>1+2n_{9})\text{ and }y>2\left(SinI(\left(-\frac{1}{2}\right)\pi +\left(-1\right)n_{4}\pi )\right)^{-1}\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{23}\in \mathrm{Z}\text{ : }n_{4}=-1+\left(-2\right)n_{23}\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)\text{ or }\left(not(y>-2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(not(n_{4}>1+2n_{9})\text{ and }y<2\left(SinI(\left(-\frac{1}{2}\right)\pi +\left(-1\right)n_{4}\pi )\right)^{-1}\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)\text{ or }\left(not(y<2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(not(n_{4}>1+2n_{9})\text{ and }\exists n_{13}\in \mathrm{Z}\text{ : }n_{4}=1+\left(-2\right)n_{13}\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)\text{ or }\left(not(y>-2)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(not(n_{4}>1+2n_{9})\text{ and }not(n_{4}<-1+2n_{9})\text{ and }\exists n_{23}\in \mathrm{Z}\text{ : }n_{4}=-1+\left(-2\right)n_{23}\text{ and }\exists n_{15}\in \mathrm{Z}\text{ : }n_{4}=\left(-2\right)n_{15}\right)\right)
x=2n_{38}\pi +\left(-1\right)ArcCosI(2y^{-1})\text{, }n_{38}\in \mathrm{Z}\text{, }\exists n_{4}\in \mathrm{Z}\text{ : }\left(\left(n_{4}\text{bmod}2=1\text{ and }not(y>-2)\text{ and }n_{4}=\left(-1\right)\left(\left(-2\right)n_{38}+2\right)\right)\text{ or }\left(not(|y|<2)\text{ and }y>\left(-2\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }n_{4}=\left(-1\right)\left(\left(-2\right)n_{38}+2\right)\right)\text{ or }\left(y>\left(-2\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }not(y>-2)\text{ and }n_{4}=\left(-1\right)\left(\left(-2\right)n_{38}+2\right)\right)\text{ or }\left(n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(y<2)\text{ and }n_{4}=\left(-1\right)\left(\left(-2\right)n_{38}+2\right)\right)\text{ or }\left(not(|y|<2)\text{ and }y<\left(-2\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }n_{4}=\left(-1\right)\left(\left(-2\right)n_{38}+2\right)\right)\text{ or }\left(y<2\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }not(y<2)\text{ and }n_{4}=2n_{38}\right)\text{ or }\left(n_{4}\text{bmod}2=1\text{ and }not(y<2)\text{ and }n_{4}=2n_{38}\right)\text{ or }\left(n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{38})\text{ and }y>\left(-2\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{38}\right))\text{ and }not(y<2)\right)\text{ or }\left(y<2\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(|y|<2)\text{ and }n_{4}=2n_{38}\right)\text{ or }\left(y<2\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{38})\text{ and }not(|y|<2)\text{ and }y<\left(-2\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{38}\right))\right)\text{ or }\left(y<2\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{38})\text{ and }not(|y|<2)\text{ and }y>\left(-2\right)\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{38}\right))\right)\text{ or }\left(y<2\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{38})\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{38}\right))\text{ and }not(y>-2)\right)\text{ or }\left(y>2\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(|y|<2)\text{ and }n_{4}=2n_{38}\right)\text{ or }\left(y>2\left(-1\right)^{\left(-1\right)n_{4}}\text{ and }n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{38})\text{ and }not(|y|<2)\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{38}\right))\text{ and }not(y=\left(-2\right)\left(-1\right)^{\left(-1\right)n_{4}})\right)\text{ or }\left(n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(y>-2)\text{ and }n_{4}=2n_{38}\right)\text{ or }\left(n_{4}\text{bmod}2=0\text{ and }n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{38})\text{ and }not(y>-2)\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{38}\right))\right)\text{ or }\left(n_{4}\text{bmod}2=1\text{ and }not(n_{4}>2n_{38})\text{ and }not(y<2)\text{ and }n_{4}\text{bmod}2=0\text{ and }not(n_{4}<\left(-1\right)\left(2+\left(-2\right)n_{38}\right))\right)\right)
Solve for y
y=\frac{2}{\cos(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}