\frac { d x } { ( x ^ { 2 } ) ^ { 2 } } = \int \frac { 1 } { ( 16 + x ^ { 2 } ) ^ { 2 } } d x
Solve for d (complex solution)
d=\frac{x^{3}\left(\sin(2\arctan(\frac{x}{4}))+2\arctan(\frac{x}{4})+256С\right)}{256}
x\neq 0\text{ and }x\neq -4i\text{ and }x\neq 4i
Solve for d
d=\frac{x^{3}\left(x^{2}\arctan(\frac{x}{4})+16\arctan(\frac{x}{4})+С\left(x^{2}+1\right)+4x\right)}{128\left(x^{2}+16\right)}
x\neq 0
Share
Copied to clipboard
dx=x^{4}\int \frac{1}{\left(16+x^{2}\right)^{2}}\mathrm{d}x
Multiply both sides of the equation by x^{4}.
dx=x^{4}\int \frac{1}{256+32x^{2}+\left(x^{2}\right)^{2}}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(16+x^{2}\right)^{2}.
dx=x^{4}\int \frac{1}{256+32x^{2}+x^{4}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
xd=x^{4}\left(\frac{\sin(2\arctan(\frac{4}{x}))}{256}-\frac{\arctan(\frac{4}{x})}{128}+С\right)
The equation is in standard form.
\frac{xd}{x}=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Divide both sides by x.
d=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Dividing by x undoes the multiplication by x.
d=\frac{x^{3}\left(-x^{2}\arctan(\frac{4}{x})-16\arctan(\frac{4}{x})+128Сx^{2}+4x+2048С_{1}\right)}{128\left(x^{2}+16\right)}
Divide x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right) by x.
dx=x^{4}\int \frac{1}{\left(16+x^{2}\right)^{2}}\mathrm{d}x
Multiply both sides of the equation by x^{4}.
dx=x^{4}\int \frac{1}{256+32x^{2}+\left(x^{2}\right)^{2}}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(16+x^{2}\right)^{2}.
dx=x^{4}\int \frac{1}{256+32x^{2}+x^{4}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
xd=x^{4}\left(\frac{\sin(2\arctan(\frac{4}{x}))}{256}-\frac{\arctan(\frac{4}{x})}{128}+С\right)
The equation is in standard form.
\frac{xd}{x}=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Divide both sides by x.
d=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Dividing by x undoes the multiplication by x.
d=\frac{x^{3}\left(-x^{2}\arctan(\frac{4}{x})-16\arctan(\frac{4}{x})+128Сx^{2}+4x+2048С_{1}\right)}{128\left(x^{2}+16\right)}
Divide x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}