Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

dx=x^{4}\int \frac{1}{\left(16+x^{2}\right)^{2}}\mathrm{d}x
Multiply both sides of the equation by x^{4}.
dx=x^{4}\int \frac{1}{256+32x^{2}+\left(x^{2}\right)^{2}}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(16+x^{2}\right)^{2}.
dx=x^{4}\int \frac{1}{256+32x^{2}+x^{4}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
xd=x^{4}\left(\frac{\sin(2\arctan(\frac{4}{x}))}{256}-\frac{\arctan(\frac{4}{x})}{128}+С\right)
The equation is in standard form.
\frac{xd}{x}=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Divide both sides by x.
d=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Dividing by x undoes the multiplication by x.
d=\frac{x^{3}\left(-x^{2}\arctan(\frac{4}{x})-16\arctan(\frac{4}{x})+128Сx^{2}+4x+2048С_{1}\right)}{128\left(x^{2}+16\right)}
Divide x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right) by x.
dx=x^{4}\int \frac{1}{\left(16+x^{2}\right)^{2}}\mathrm{d}x
Multiply both sides of the equation by x^{4}.
dx=x^{4}\int \frac{1}{256+32x^{2}+\left(x^{2}\right)^{2}}\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(16+x^{2}\right)^{2}.
dx=x^{4}\int \frac{1}{256+32x^{2}+x^{4}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
xd=x^{4}\left(\frac{\sin(2\arctan(\frac{4}{x}))}{256}-\frac{\arctan(\frac{4}{x})}{128}+С\right)
The equation is in standard form.
\frac{xd}{x}=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Divide both sides by x.
d=\frac{x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right)}{x}
Dividing by x undoes the multiplication by x.
d=\frac{x^{3}\left(-x^{2}\arctan(\frac{4}{x})-16\arctan(\frac{4}{x})+128Сx^{2}+4x+2048С_{1}\right)}{128\left(x^{2}+16\right)}
Divide x^{4}\left(-\frac{\arctan(\frac{4}{x})}{128}+\frac{x}{32\left(x^{2}+16\right)}+С\right) by x.