Solve for y
y=-\frac{x^{3}}{8}-\frac{1}{4}+\frac{7}{8x}
x\neq 0
Share
Copied to clipboard
8xy=7-x^{4}-\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})
Subtract \frac{\mathrm{d}}{\mathrm{d}x}(x^{2}) from both sides.
8xy=-\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})-x^{4}+7
Reorder the terms.
8xy=7-2x-x^{4}
The equation is in standard form.
\frac{8xy}{8x}=\frac{7-2x-x^{4}}{8x}
Divide both sides by 8x.
y=\frac{7-2x-x^{4}}{8x}
Dividing by 8x undoes the multiplication by 8x.
y=-\frac{x^{3}}{8}-\frac{1}{4}+\frac{7}{8x}
Divide -2x-x^{4}+7 by 8x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}