Solve for b
\left\{\begin{matrix}b=-\frac{m\left(v+g\right)}{tv}\text{, }&t\neq 0\text{ and }v\neq 0\text{ and }m\neq 0\\b\in \mathrm{R}\text{, }&\left(v=-g\text{ and }t=0\text{ and }m\neq 0\right)\text{ or }\left(v=0\text{ and }g=0\text{ and }m\neq 0\right)\end{matrix}\right.
Solve for g
g=-\frac{v\left(m+bt\right)}{m}
m\neq 0
Quiz
Linear Equation
5 problems similar to:
\frac { d v ( t ) } { d t } = - \frac { b v ( t ) } { m } - g
Share
Copied to clipboard
m\frac{\mathrm{d}}{\mathrm{d}t}(vt)=-bvt-gm
Multiply both sides of the equation by m.
-bvt-gm=m\frac{\mathrm{d}}{\mathrm{d}t}(vt)
Swap sides so that all variable terms are on the left hand side.
-bvt=m\frac{\mathrm{d}}{\mathrm{d}t}(vt)+gm
Add gm to both sides.
-btv=m\frac{\mathrm{d}}{\mathrm{d}t}(tv)+gm
Reorder the terms.
\left(-tv\right)b=gm+mv
The equation is in standard form.
\frac{\left(-tv\right)b}{-tv}=\frac{m\left(v+g\right)}{-tv}
Divide both sides by -tv.
b=\frac{m\left(v+g\right)}{-tv}
Dividing by -tv undoes the multiplication by -tv.
b=-\frac{m\left(v+g\right)}{tv}
Divide m\left(v+g\right) by -tv.
m\frac{\mathrm{d}}{\mathrm{d}t}(vt)=-bvt-gm
Multiply both sides of the equation by m.
-bvt-gm=m\frac{\mathrm{d}}{\mathrm{d}t}(vt)
Swap sides so that all variable terms are on the left hand side.
-gm=m\frac{\mathrm{d}}{\mathrm{d}t}(vt)+bvt
Add bvt to both sides.
\left(-m\right)g=mv+btv
The equation is in standard form.
\frac{\left(-m\right)g}{-m}=\frac{v\left(m+bt\right)}{-m}
Divide both sides by -m.
g=\frac{v\left(m+bt\right)}{-m}
Dividing by -m undoes the multiplication by -m.
g=-\frac{v\left(m+bt\right)}{m}
Divide v\left(m+bt\right) by -m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}