\frac { d v } { m g \cdot k v ^ { 2 } } = \frac { d t } { m }
Solve for d (complex solution)
\left\{\begin{matrix}d=0\text{, }&m\neq 0\text{ and }g\neq 0\text{ and }k\neq 0\text{ and }v\neq 0\\d\in \mathrm{C}\text{, }&v=\frac{1}{gkt}\text{ and }g\neq 0\text{ and }k\neq 0\text{ and }m\neq 0\text{ and }t\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&m\neq 0\text{ and }g\neq 0\text{ and }k\neq 0\text{ and }v\neq 0\\d\in \mathrm{R}\text{, }&v=\frac{1}{gkt}\text{ and }g\neq 0\text{ and }t\neq 0\text{ and }k\neq 0\text{ and }m\neq 0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{1}{ktv}\text{, }&t\neq 0\text{ and }k\neq 0\text{ and }v\neq 0\text{ and }m\neq 0\\g\neq 0\text{, }&d=0\text{ and }k\neq 0\text{ and }v\neq 0\text{ and }m\neq 0\end{matrix}\right.
Share
Copied to clipboard
dv=gkv^{2}dt
Multiply both sides of the equation by gkmv^{2}, the least common multiple of mgkv^{2},m.
dv-gkv^{2}dt=0
Subtract gkv^{2}dt from both sides.
-dgktv^{2}+dv=0
Reorder the terms.
\left(-gktv^{2}+v\right)d=0
Combine all terms containing d.
\left(v-gktv^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -gktv^{2}+v.
dv=gkv^{2}dt
Multiply both sides of the equation by gkmv^{2}, the least common multiple of mgkv^{2},m.
dv-gkv^{2}dt=0
Subtract gkv^{2}dt from both sides.
-dgktv^{2}+dv=0
Reorder the terms.
\left(-gktv^{2}+v\right)d=0
Combine all terms containing d.
\left(v-gktv^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -gktv^{2}+v.
dv=gkv^{2}dt
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by gkmv^{2}, the least common multiple of mgkv^{2},m.
gkv^{2}dt=dv
Swap sides so that all variable terms are on the left hand side.
dktv^{2}g=dv
The equation is in standard form.
\frac{dktv^{2}g}{dktv^{2}}=\frac{dv}{dktv^{2}}
Divide both sides by kv^{2}dt.
g=\frac{dv}{dktv^{2}}
Dividing by kv^{2}dt undoes the multiplication by kv^{2}dt.
g=\frac{1}{ktv}
Divide dv by kv^{2}dt.
g=\frac{1}{ktv}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}