\frac { d p } { p } = \frac { 2 x } { 1 + x ^ { 2 } } d x
Solve for d (complex solution)
\left\{\begin{matrix}d=0\text{, }&p\neq 0\text{ and }x\neq -i\text{ and }x\neq i\\d\in \mathrm{C}\text{, }&\left(x=-1\text{ or }x=1\right)\text{ and }p\neq 0\end{matrix}\right.
Solve for p (complex solution)
p\neq 0
\left(d=0\text{ and }x\neq -i\text{ and }x\neq i\right)\text{ or }x=-1\text{ or }x=1
Solve for d
\left\{\begin{matrix}d=0\text{, }&p\neq 0\\d\in \mathrm{R}\text{, }&p\neq 0\text{ and }|x|=1\end{matrix}\right.
Solve for p
p\neq 0
d=0\text{ or }|x|=1
Graph
Share
Copied to clipboard
\left(1+x^{2}\right)dp=p\times 2xdx
Multiply both sides of the equation by p\left(x-i\right)\left(x+i\right), the least common multiple of p,1+x^{2}.
\left(d+x^{2}d\right)p=p\times 2xdx
Use the distributive property to multiply 1+x^{2} by d.
dp+x^{2}dp=p\times 2xdx
Use the distributive property to multiply d+x^{2}d by p.
dp+x^{2}dp=p\times 2x^{2}d
Multiply x and x to get x^{2}.
dp+x^{2}dp-p\times 2x^{2}d=0
Subtract p\times 2x^{2}d from both sides.
dp-x^{2}dp=0
Combine x^{2}dp and -p\times 2x^{2}d to get -x^{2}dp.
\left(p-x^{2}p\right)d=0
Combine all terms containing d.
\left(p-px^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by p-x^{2}p.
\left(1+x^{2}\right)dp=p\times 2xdx
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p\left(x-i\right)\left(x+i\right), the least common multiple of p,1+x^{2}.
\left(d+x^{2}d\right)p=p\times 2xdx
Use the distributive property to multiply 1+x^{2} by d.
dp+x^{2}dp=p\times 2xdx
Use the distributive property to multiply d+x^{2}d by p.
dp+x^{2}dp=p\times 2x^{2}d
Multiply x and x to get x^{2}.
dp+x^{2}dp-p\times 2x^{2}d=0
Subtract p\times 2x^{2}d from both sides.
dp-x^{2}dp=0
Combine x^{2}dp and -p\times 2x^{2}d to get -x^{2}dp.
\left(d-x^{2}d\right)p=0
Combine all terms containing p.
\left(d-dx^{2}\right)p=0
The equation is in standard form.
p=0
Divide 0 by d-x^{2}d.
p\in \emptyset
Variable p cannot be equal to 0.
\left(x^{2}+1\right)dp=p\times 2xdx
Multiply both sides of the equation by p\left(x^{2}+1\right), the least common multiple of p,1+x^{2}.
\left(x^{2}d+d\right)p=p\times 2xdx
Use the distributive property to multiply x^{2}+1 by d.
x^{2}dp+dp=p\times 2xdx
Use the distributive property to multiply x^{2}d+d by p.
x^{2}dp+dp=p\times 2x^{2}d
Multiply x and x to get x^{2}.
x^{2}dp+dp-p\times 2x^{2}d=0
Subtract p\times 2x^{2}d from both sides.
-x^{2}dp+dp=0
Combine x^{2}dp and -p\times 2x^{2}d to get -x^{2}dp.
\left(-x^{2}p+p\right)d=0
Combine all terms containing d.
\left(p-px^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -x^{2}p+p.
\left(x^{2}+1\right)dp=p\times 2xdx
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p\left(x^{2}+1\right), the least common multiple of p,1+x^{2}.
\left(x^{2}d+d\right)p=p\times 2xdx
Use the distributive property to multiply x^{2}+1 by d.
x^{2}dp+dp=p\times 2xdx
Use the distributive property to multiply x^{2}d+d by p.
x^{2}dp+dp=p\times 2x^{2}d
Multiply x and x to get x^{2}.
x^{2}dp+dp-p\times 2x^{2}d=0
Subtract p\times 2x^{2}d from both sides.
-x^{2}dp+dp=0
Combine x^{2}dp and -p\times 2x^{2}d to get -x^{2}dp.
\left(-x^{2}d+d\right)p=0
Combine all terms containing p.
\left(d-dx^{2}\right)p=0
The equation is in standard form.
p=0
Divide 0 by -x^{2}d+d.
p\in \emptyset
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}