\frac { d c } { 6 } = \frac { 1 } { \sqrt { 3 } }
Solve for c
c=\frac{2\sqrt{3}}{d}
d\neq 0
Solve for d
d=\frac{2\sqrt{3}}{c}
c\neq 0
Share
Copied to clipboard
dc=2\times 3^{\frac{1}{2}}
Multiply both sides of the equation by 6.
cd=2\sqrt{3}
Reorder the terms.
dc=2\sqrt{3}
The equation is in standard form.
\frac{dc}{d}=\frac{2\sqrt{3}}{d}
Divide both sides by d.
c=\frac{2\sqrt{3}}{d}
Dividing by d undoes the multiplication by d.
dc=2\times 3^{\frac{1}{2}}
Multiply both sides of the equation by 6.
cd=2\sqrt{3}
Reorder the terms.
\frac{cd}{c}=\frac{2\sqrt{3}}{c}
Divide both sides by c.
d=\frac{2\sqrt{3}}{c}
Dividing by c undoes the multiplication by c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}