\frac { d Q } { Q } = t d t
Solve for Q
Q\neq 0
d=0\text{ or }|t|=1
Solve for d
\left\{\begin{matrix}d=0\text{, }&Q\neq 0\\d\in \mathrm{R}\text{, }&Q\neq 0\text{ and }|t|=1\end{matrix}\right.
Share
Copied to clipboard
dQ=tdtQ
Variable Q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Q.
dQ=t^{2}dQ
Multiply t and t to get t^{2}.
dQ-t^{2}dQ=0
Subtract t^{2}dQ from both sides.
-Qdt^{2}+Qd=0
Reorder the terms.
\left(-dt^{2}+d\right)Q=0
Combine all terms containing Q.
\left(d-dt^{2}\right)Q=0
The equation is in standard form.
Q=0
Divide 0 by d-dt^{2}.
Q\in \emptyset
Variable Q cannot be equal to 0.
dQ=tdtQ
Multiply both sides of the equation by Q.
dQ=t^{2}dQ
Multiply t and t to get t^{2}.
dQ-t^{2}dQ=0
Subtract t^{2}dQ from both sides.
-Qdt^{2}+Qd=0
Reorder the terms.
\left(-Qt^{2}+Q\right)d=0
Combine all terms containing d.
\left(Q-Qt^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -Qt^{2}+Q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}