\frac { d C _ { 2 } ( t ) } { d t } + k _ { e } C _ { 2 } ( t ) = k _ { 1 } C _ { 0 } e ^ { - k _ { 1 } t }
Solve for k
k=C_{2}\left(k_{e}t+1\right)e^{k_{1}t}
Solve for C_2
\left\{\begin{matrix}C_{2}=\frac{k}{\left(k_{e}t+1\right)e^{k_{1}t}}\text{, }&k_{e}=0\text{ or }t\neq -\frac{1}{k_{e}}\\C_{2}\in \mathrm{R}\text{, }&k=0\text{ and }t=-\frac{1}{k_{e}}\text{ and }k_{e}\neq 0\end{matrix}\right.
Share
Copied to clipboard
kcombination(1,0)e^{\left(-k_{1}\right)t}=\frac{\mathrm{d}(C_{2}t)}{\mathrm{d}t}+k_{e}C_{2}t
Swap sides so that all variable terms are on the left hand side.
ke^{-k_{1}t}combination(1,0)=\frac{\mathrm{d}(C_{2}t)}{\mathrm{d}t}+C_{2}k_{e}t
Reorder the terms.
\frac{1}{e^{k_{1}t}}k=C_{2}k_{e}t+C_{2}
The equation is in standard form.
\frac{\frac{1}{e^{k_{1}t}}ke^{k_{1}t}}{1}=\frac{\left(C_{2}k_{e}t+C_{2}\right)e^{k_{1}t}}{1}
Divide both sides by e^{-k_{1}t}.
k=\frac{\left(C_{2}k_{e}t+C_{2}\right)e^{k_{1}t}}{1}
Dividing by e^{-k_{1}t} undoes the multiplication by e^{-k_{1}t}.
k=C_{2}\left(k_{e}t+1\right)e^{k_{1}t}
Divide C_{2}+C_{2}k_{e}t by e^{-k_{1}t}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}