Skip to main content
Solve for k
Tick mark Image
Solve for C_2
Tick mark Image

Similar Problems from Web Search

Share

kcombination(1,0)e^{\left(-k_{1}\right)t}=\frac{\mathrm{d}(C_{2}t)}{\mathrm{d}t}+k_{e}C_{2}t
Swap sides so that all variable terms are on the left hand side.
ke^{-k_{1}t}combination(1,0)=\frac{\mathrm{d}(C_{2}t)}{\mathrm{d}t}+C_{2}k_{e}t
Reorder the terms.
\frac{1}{e^{k_{1}t}}k=C_{2}k_{e}t+C_{2}
The equation is in standard form.
\frac{\frac{1}{e^{k_{1}t}}ke^{k_{1}t}}{1}=\frac{\left(C_{2}k_{e}t+C_{2}\right)e^{k_{1}t}}{1}
Divide both sides by e^{-k_{1}t}.
k=\frac{\left(C_{2}k_{e}t+C_{2}\right)e^{k_{1}t}}{1}
Dividing by e^{-k_{1}t} undoes the multiplication by e^{-k_{1}t}.
k=C_{2}\left(k_{e}t+1\right)e^{k_{1}t}
Divide C_{2}+C_{2}k_{e}t by e^{-k_{1}t}.