Evaluate
\frac{d}{3}+\frac{d}{c}+1-\frac{2}{c}
Expand
\frac{d}{3}+\frac{d}{c}+1-\frac{2}{c}
Share
Copied to clipboard
\frac{3\left(d-2\right)}{3c}+\frac{\left(d+3\right)c}{3c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c and 3 is 3c. Multiply \frac{d-2}{c} times \frac{3}{3}. Multiply \frac{d+3}{3} times \frac{c}{c}.
\frac{3\left(d-2\right)+\left(d+3\right)c}{3c}
Since \frac{3\left(d-2\right)}{3c} and \frac{\left(d+3\right)c}{3c} have the same denominator, add them by adding their numerators.
\frac{3d-6+dc+3c}{3c}
Do the multiplications in 3\left(d-2\right)+\left(d+3\right)c.
\frac{3\left(d-2\right)}{3c}+\frac{\left(d+3\right)c}{3c}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c and 3 is 3c. Multiply \frac{d-2}{c} times \frac{3}{3}. Multiply \frac{d+3}{3} times \frac{c}{c}.
\frac{3\left(d-2\right)+\left(d+3\right)c}{3c}
Since \frac{3\left(d-2\right)}{3c} and \frac{\left(d+3\right)c}{3c} have the same denominator, add them by adding their numerators.
\frac{3d-6+dc+3c}{3c}
Do the multiplications in 3\left(d-2\right)+\left(d+3\right)c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}