Skip to main content
Solve for d
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(64-x^{3}\right)d\left(x^{2}-y^{2}\right)=\left(-x^{2}+y^{3}\right)d\left(x^{2}-y^{2}\right)
Multiply both sides of the equation by \left(x-4\right)\left(x^{2}+4x+16\right)\left(-x^{2}+y^{3}\right), the least common multiple of x^{2}-y^{3},x^{3}-4^{3}.
\left(64d-x^{3}d\right)\left(x^{2}-y^{2}\right)=\left(-x^{2}+y^{3}\right)d\left(x^{2}-y^{2}\right)
Use the distributive property to multiply 64-x^{3} by d.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}=\left(-x^{2}+y^{3}\right)d\left(x^{2}-y^{2}\right)
Use the distributive property to multiply 64d-x^{3}d by x^{2}-y^{2}.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}=\left(-x^{2}d+y^{3}d\right)\left(x^{2}-y^{2}\right)
Use the distributive property to multiply -x^{2}+y^{3} by d.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}=-dx^{4}+x^{2}dy^{2}+y^{3}dx^{2}-dy^{5}
Use the distributive property to multiply -x^{2}d+y^{3}d by x^{2}-y^{2}.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}=x^{2}dy^{2}+y^{3}dx^{2}-dy^{5}
Add dx^{4} to both sides.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}-x^{2}dy^{2}=y^{3}dx^{2}-dy^{5}
Subtract x^{2}dy^{2} from both sides.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}-x^{2}dy^{2}-y^{3}dx^{2}=-dy^{5}
Subtract y^{3}dx^{2} from both sides.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}-x^{2}dy^{2}-y^{3}dx^{2}+dy^{5}=0
Add dy^{5} to both sides.
-dx^{5}+dx^{4}-dx^{2}y^{3}-dx^{2}y^{2}+64dx^{2}+dy^{5}+dy^{2}x^{3}-64dy^{2}=0
Reorder the terms.
\left(-x^{5}+x^{4}-x^{2}y^{3}-x^{2}y^{2}+64x^{2}+y^{5}+y^{2}x^{3}-64y^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -x^{5}+x^{4}-x^{2}y^{3}-x^{2}y^{2}+64x^{2}+y^{5}+y^{2}x^{3}-64y^{2}.