Solve for d
\left\{\begin{matrix}d=0\text{, }&y\neq x^{\frac{2}{3}}\text{ and }x\neq 4\\d\in \mathrm{R}\text{, }&\left(y=\sqrt[3]{64+x^{2}-x^{3}}\text{ and }x\neq 4\right)\text{ or }\left(x=y\text{ and }y\neq 1\text{ and }y\neq 0\text{ and }y\neq 4\right)\text{ or }\left(x=-y\text{ and }y\neq 1\text{ and }y\neq 0\text{ and }y\neq -4\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(64-x^{3}\right)d\left(x^{2}-y^{2}\right)=\left(-x^{2}+y^{3}\right)d\left(x^{2}-y^{2}\right)
Multiply both sides of the equation by \left(x-4\right)\left(x^{2}+4x+16\right)\left(-x^{2}+y^{3}\right), the least common multiple of x^{2}-y^{3},x^{3}-4^{3}.
\left(64d-x^{3}d\right)\left(x^{2}-y^{2}\right)=\left(-x^{2}+y^{3}\right)d\left(x^{2}-y^{2}\right)
Use the distributive property to multiply 64-x^{3} by d.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}=\left(-x^{2}+y^{3}\right)d\left(x^{2}-y^{2}\right)
Use the distributive property to multiply 64d-x^{3}d by x^{2}-y^{2}.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}=\left(-x^{2}d+y^{3}d\right)\left(x^{2}-y^{2}\right)
Use the distributive property to multiply -x^{2}+y^{3} by d.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}=-dx^{4}+x^{2}dy^{2}+y^{3}dx^{2}-dy^{5}
Use the distributive property to multiply -x^{2}d+y^{3}d by x^{2}-y^{2}.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}=x^{2}dy^{2}+y^{3}dx^{2}-dy^{5}
Add dx^{4} to both sides.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}-x^{2}dy^{2}=y^{3}dx^{2}-dy^{5}
Subtract x^{2}dy^{2} from both sides.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}-x^{2}dy^{2}-y^{3}dx^{2}=-dy^{5}
Subtract y^{3}dx^{2} from both sides.
64dx^{2}-64dy^{2}-dx^{5}+x^{3}dy^{2}+dx^{4}-x^{2}dy^{2}-y^{3}dx^{2}+dy^{5}=0
Add dy^{5} to both sides.
-dx^{5}+dx^{4}-dx^{2}y^{3}-dx^{2}y^{2}+64dx^{2}+dy^{5}+dy^{2}x^{3}-64dy^{2}=0
Reorder the terms.
\left(-x^{5}+x^{4}-x^{2}y^{3}-x^{2}y^{2}+64x^{2}+y^{5}+y^{2}x^{3}-64y^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -x^{5}+x^{4}-x^{2}y^{3}-x^{2}y^{2}+64x^{2}+y^{5}+y^{2}x^{3}-64y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}