Solve for d
d=\frac{t\left(u-1\right)}{u}
t\neq 0\text{ and }u\neq 0
Solve for t
\left\{\begin{matrix}t=-\frac{du}{1-u}\text{, }&u\neq 0\text{ and }d\neq 0\text{ and }u\neq 1\\t\neq 0\text{, }&d=0\text{ and }u=1\end{matrix}\right.
Share
Copied to clipboard
ud+tu\left(-1\right)=-t
Multiply both sides of the equation by tu, the least common multiple of t,u.
ud=-t-tu\left(-1\right)
Subtract tu\left(-1\right) from both sides.
ud=-t+tu
Multiply -1 and -1 to get 1.
ud=tu-t
The equation is in standard form.
\frac{ud}{u}=\frac{t\left(u-1\right)}{u}
Divide both sides by u.
d=\frac{t\left(u-1\right)}{u}
Dividing by u undoes the multiplication by u.
ud+tu\left(-1\right)=-t
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by tu, the least common multiple of t,u.
ud+tu\left(-1\right)+t=0
Add t to both sides.
tu\left(-1\right)+t=-ud
Subtract ud from both sides. Anything subtracted from zero gives its negation.
-tu+t=-du
Reorder the terms.
\left(-u+1\right)t=-du
Combine all terms containing t.
\left(1-u\right)t=-du
The equation is in standard form.
\frac{\left(1-u\right)t}{1-u}=-\frac{du}{1-u}
Divide both sides by 1-u.
t=-\frac{du}{1-u}
Dividing by 1-u undoes the multiplication by 1-u.
t=-\frac{du}{1-u}\text{, }t\neq 0
Variable t cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}