Solve for d
d=\frac{5\left(r+t\right)}{t}
t\neq -r\text{ and }t\neq 0
Solve for r
r=\frac{t\left(d-5\right)}{5}
t\neq 0\text{ and }d\neq 0
Share
Copied to clipboard
td=\left(r+t\right)\times 5
Multiply both sides of the equation by t\left(r+t\right), the least common multiple of t+r,t.
td=5r+5t
Use the distributive property to multiply r+t by 5.
\frac{td}{t}=\frac{5r+5t}{t}
Divide both sides by t.
d=\frac{5r+5t}{t}
Dividing by t undoes the multiplication by t.
d=\frac{5\left(r+t\right)}{t}
Divide 5r+5t by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}