Evaluate
768x^{11}-1620x^{19}
Differentiate w.r.t. x
8448x^{10}-30780x^{18}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(\left(8x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
Consider \left(8x^{6}-9x^{10}\right)\left(8x^{6}+9x^{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}\left(x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
Expand \left(8x^{6}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}x^{12}-\left(9x^{10}\right)^{2})
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-\left(9x^{10}\right)^{2})
Calculate 8 to the power of 2 and get 64.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}\left(x^{10}\right)^{2})
Expand \left(9x^{10}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}x^{20})
To raise a power to another power, multiply the exponents. Multiply 10 and 2 to get 20.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-81x^{20})
Calculate 9 to the power of 2 and get 81.
12\times 64x^{12-1}+20\left(-81\right)x^{20-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
768x^{12-1}+20\left(-81\right)x^{20-1}
Multiply 12 times 64.
768x^{11}+20\left(-81\right)x^{20-1}
Subtract 1 from 12.
768x^{11}-1620x^{20-1}
Multiply 20 times -81.
768x^{11}-1620x^{19}
Subtract 1 from 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}