Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\left(8x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
Consider \left(8x^{6}-9x^{10}\right)\left(8x^{6}+9x^{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}\left(x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
Expand \left(8x^{6}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}x^{12}-\left(9x^{10}\right)^{2})
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-\left(9x^{10}\right)^{2})
Calculate 8 to the power of 2 and get 64.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}\left(x^{10}\right)^{2})
Expand \left(9x^{10}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}x^{20})
To raise a power to another power, multiply the exponents. Multiply 10 and 2 to get 20.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-81x^{20})
Calculate 9 to the power of 2 and get 81.
12\times 64x^{12-1}+20\left(-81\right)x^{20-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
768x^{12-1}+20\left(-81\right)x^{20-1}
Multiply 12 times 64.
768x^{11}+20\left(-81\right)x^{20-1}
Subtract 1 from 12.
768x^{11}-1620x^{20-1}
Multiply 20 times -81.
768x^{11}-1620x^{19}
Subtract 1 from 20.