Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

-4\left(2x^{3}-3x^{1}\right)^{-4-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}-3x^{1})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-4\left(2x^{3}-3x^{1}\right)^{-5}\left(3\times 2x^{3-1}-3x^{1-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(2x^{3}-3x^{1}\right)^{-5}\left(-24x^{2}+12x^{0}\right)
Simplify.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12x^{0}\right)
For any term t, t^{1}=t.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\times 1\right)
For any term t except 0, t^{0}=1.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\right)
For any term t, t\times 1=t and 1t=t.