Evaluate
\frac{x\left(3x\cos(3x)e^{2x}-2x\sin(3x)e^{2x}+2\sin(3x)e^{2x}+3x\ln(x)\cos(3x)+2\ln(x)\sin(3x)-\sin(3x)\right)}{\left(e^{2x}+\ln(x)\right)^{2}}
Differentiate w.r.t. x
\frac{-9x^{2}\sin(3x)\left(e^{2x}+\ln(x)\right)^{3}-4\sin(3x)e^{2x}\left(x\ln(x)\right)^{2}-12\cos(3x)e^{2x}\left(x\ln(x)\right)^{2}+12x\cos(3x)\left(e^{2x}+\ln(x)\right)^{3}+2\sin(3x)\left(e^{2x}+\ln(x)\right)^{3}-8x\sin(3x)\ln(x)^{2}e^{2x}-24x^{2}\ln(x)\cos(3x)e^{4x}+8x\ln(x)\sin(3x)e^{2x}-12x\ln(x)\cos(3x)e^{2x}-16x\ln(x)\sin(3x)e^{4x}+4x^{2}\sin(3x)e^{6x}-12x^{2}\cos(3x)e^{6x}-6\ln(x)\sin(3x)e^{2x}+8x\sin(3x)e^{4x}-6x\cos(3x)e^{4x}-8x\sin(3x)e^{6x}-6x\cos(3x)\ln(x)^{2}+2\sin(3x)e^{2x}-3\sin(3x)e^{4x}-3\sin(3x)\ln(x)^{2}+2\ln(x)\sin(3x)}{\left(e^{2x}+\ln(x)\right)^{4}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}