Evaluate
\frac{x^{2}\ln(x\left(1-x\right))-x\ln(x\left(1-x\right))-ex\ln(x\left(1-x\right))+e\ln(x\left(1-x\right))+2ex\ln(x)-e\ln(x)-2x^{2}+x}{x\left(1-x\right)\ln(x\left(1-x\right))^{2}}
Differentiate w.r.t. x
\frac{-e\left(x\ln(x\left(1-x\right))\right)^{2}+2ex\ln(x\left(1-x\right))^{2}+2ex^{2}\ln(x)\ln(x\left(1-x\right))+2x^{3}\ln(x\left(1-x\right))-e\ln(x\left(1-x\right))^{2}-2ex\ln(x)\ln(x\left(1-x\right))-4ex^{2}\ln(x\left(1-x\right))-4x^{2}\ln(x\left(1-x\right))+x\ln(x\left(1-x\right))+e\ln(x)\ln(x\left(1-x\right))+6ex\ln(x\left(1-x\right))-2e\ln(x\left(1-x\right))+8ex^{2}\ln(x)-8ex\ln(x)+2e\ln(x)-8x^{3}+8x^{2}-2x}{\left(x\left(1-x\right)\right)^{2}\ln(x\left(1-x\right))^{3}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}