Evaluate
\frac{e^{10x}\left(\cos(\sin(x))\right)^{4}\left(-18\ln(2)x\cos(\sin(x))\cos(\ln(2)x^{2})-5\cos(x)\sin(\sin(x))\sin(\ln(2)x^{2})+10\cos(\sin(x))\sin(\ln(2)x^{2})\right)}{\left(\cos(e)\right)^{9}\left(\sin(\ln(2)x^{2})\right)^{10}}
Differentiate w.r.t. x
\frac{\left(\cos(\sin(x))\right)^{3}\left(40\left(\cos(x)\sin(\sin(x))\sin(\ln(2)x^{2})\right)^{2}-10\left(\cos(x)\cos(\sin(x))\sin(\ln(2)x^{2})\right)^{2}+72\left(\ln(2)x\cos(\sin(x))\sin(\ln(2)x^{2})\right)^{2}+720\left(\ln(2)x\cos(\sin(x))\cos(\ln(2)x^{2})\right)^{2}+200\left(\cos(\sin(x))\sin(\ln(2)x^{2})\right)^{2}+5\sin(x)\sin(2\sin(x))\left(\sin(\ln(2)x^{2})\right)^{2}-100\cos(x)\sin(2\sin(x))\left(\sin(\ln(2)x^{2})\right)^{2}+90\ln(2)x\cos(x)\sin(2\sin(x))\sin(2\ln(2)x^{2})-360\ln(2)x\left(\cos(\sin(x))\right)^{2}\sin(2\ln(2)x^{2})-18\ln(2)\left(\cos(\sin(x))\right)^{2}\sin(2\ln(2)x^{2})\right)\left(e^{x}\right)^{10}}{2\left(\cos(e)\right)^{9}\left(\sin(\ln(2)x^{2})\right)^{11}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}