Evaluate
\frac{-4\left(\cos(x)\right)^{4}-4\sin(x)\left(\cos(x)\right)^{2}-4\cos(x)\left(\sin(x)\right)^{2}-\left(\sin(2x)\right)^{2}+4\sin(x)-4\cos(x)}{4\left(\cos(x)\left(\sin(x)-\cos(x)\right)\right)^{2}}
Differentiate w.r.t. x
\frac{8\left(\sin(x)\right)^{2}\left(\cos(x)\right)^{4}+8\sin(x)\left(\cos(x)\right)^{5}+8\left(\cos(x)\right)^{6}+8\left(\sin(x)\right)^{2}\left(\cos(x)\right)^{3}+12\left(\cos(x)\right)^{2}\left(\sin(x)\right)^{3}+12\sin(x)\left(\cos(x)\right)^{4}-4\cos(x)\left(\sin(x)\right)^{4}+4\left(\cos(x)\right)^{5}+8\sin(x)\left(\cos(x)\right)^{2}-20\cos(x)\left(\sin(x)\right)^{2}+4\left(\cos(x)\right)^{3}+8\left(\sin(x)\right)^{3}+\left(\sin(2x)\right)^{3}}{4\left(\cos(x)\left(\sin(x)-\cos(x)\right)\right)^{3}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}