Evaluate
\frac{4\left(-\sin(2x)\cos(x)+2\sin(x)\cos(2x)+2x\cos(x)+4С\cos(x)-2\sin(x)\right)}{\left(-\sin(2x)+2x+4С_{1}\right)^{2}}
Differentiate w.r.t. x
\frac{-\sin(x)\left(-\sin(2x)+2x+4С\right)^{3}+16С_{1}\left(-\sin(4x)\cos(x)+2\sin(2x)\cos(x)-4\sin(x)\cos(2x)+4x\cos(3x)-4x\cos(x)+4\sin(x)\right)+4\cos(x)\cos(2x)\left(\sin(2x)\right)^{2}-8\sin(x)\sin(2x)\left(\cos(2x)\right)^{2}-4\sin(x)\left(\sin(2x)\right)^{3}+16x\sin(2x)\cos(x)-8x\sin(4x)\cos(x)-32x\sin(x)\cos(2x)-4\cos(x)\left(\sin(2x)\right)^{2}+16x^{2}\cos(3x)+64С_{2}^{2}\cos(3x)-16x^{2}\cos(x)-64С_{3}^{2}\cos(x)+8\sin(x)\sin(4x)-8\sin(x)\sin(2x)+32x\sin(x)}{\left(-\frac{\sin(2x)}{4}+\frac{x}{2}+С_{4}\right)\left(-\sin(2x)+2x+4С_{5}\right)^{3}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}