Evaluate
\frac{32\sin(2t)\left(\left(\sin(t)\right)^{4}+\left(\cos(t)\right)^{4}+\left(\sin(2t)\right)^{2}\right)}{-32\left(\sin(t)\right)^{2}\left(\cos(t)\right)^{6}-32\left(\cos(t)\right)^{2}\left(\sin(t)\right)^{6}+8\left(\sin(t)\right)^{8}+8\left(\cos(t)\right)^{8}+3\left(\sin(2t)\right)^{4}}
Differentiate w.r.t. t
\frac{2\left(-88\left(\sin(t)\right)^{2}\left(\cos(t)\right)^{6}-88\left(\cos(t)\right)^{2}\left(\sin(t)\right)^{6}-13\left(\sin(2t)\right)^{4}+4\left(\sin(2t)\right)^{2}-4\right)}{5\left(\sin(t)\right)^{2}\left(\cos(t)\right)^{8}+10\left(\cos(t)\right)^{4}\left(\sin(t)\right)^{6}-5\left(\cos(t)\right)^{2}\left(\sin(t)\right)^{8}-10\left(\sin(t)\right)^{4}\left(\cos(t)\right)^{6}+\left(\sin(t)\right)^{10}-\left(\cos(t)\right)^{10}}
Quiz
Differentiation
5 problems similar to:
\frac { d } { d t } ( \sec ^ { 3 } ( 2 t ) - \sec ( 2 t ) )
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}