Solve for d
d = \frac{200160}{101} = 1981\frac{79}{101} \approx 1981.782178218
Share
Copied to clipboard
\frac{d}{2224}=\frac{4.5}{5.05}
Divide both sides by 5.05.
\frac{d}{2224}=\frac{450}{505}
Expand \frac{4.5}{5.05} by multiplying both numerator and the denominator by 100.
\frac{d}{2224}=\frac{90}{101}
Reduce the fraction \frac{450}{505} to lowest terms by extracting and canceling out 5.
d=\frac{90}{101}\times 2224
Multiply both sides by 2224.
d=\frac{90\times 2224}{101}
Express \frac{90}{101}\times 2224 as a single fraction.
d=\frac{200160}{101}
Multiply 90 and 2224 to get 200160.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}