Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{d}{10d+7}-d-\left(-2\right)
To find the opposite of d-2, find the opposite of each term.
\frac{d}{10d+7}-d+2
The opposite of -2 is 2.
\frac{d}{10d+7}+\frac{\left(-d+2\right)\left(10d+7\right)}{10d+7}
To add or subtract expressions, expand them to make their denominators the same. Multiply -d+2 times \frac{10d+7}{10d+7}.
\frac{d+\left(-d+2\right)\left(10d+7\right)}{10d+7}
Since \frac{d}{10d+7} and \frac{\left(-d+2\right)\left(10d+7\right)}{10d+7} have the same denominator, add them by adding their numerators.
\frac{d-10d^{2}-7d+20d+14}{10d+7}
Do the multiplications in d+\left(-d+2\right)\left(10d+7\right).
\frac{14d-10d^{2}+14}{10d+7}
Combine like terms in d-10d^{2}-7d+20d+14.
\frac{d}{10d+7}-d-\left(-2\right)
To find the opposite of d-2, find the opposite of each term.
\frac{d}{10d+7}-d+2
The opposite of -2 is 2.
\frac{d}{10d+7}+\frac{\left(-d+2\right)\left(10d+7\right)}{10d+7}
To add or subtract expressions, expand them to make their denominators the same. Multiply -d+2 times \frac{10d+7}{10d+7}.
\frac{d+\left(-d+2\right)\left(10d+7\right)}{10d+7}
Since \frac{d}{10d+7} and \frac{\left(-d+2\right)\left(10d+7\right)}{10d+7} have the same denominator, add them by adding their numerators.
\frac{d-10d^{2}-7d+20d+14}{10d+7}
Do the multiplications in d+\left(-d+2\right)\left(10d+7\right).
\frac{14d-10d^{2}+14}{10d+7}
Combine like terms in d-10d^{2}-7d+20d+14.