Evaluate
\frac{d^{11}}{6}
Differentiate w.r.t. d
\frac{11d^{10}}{6}
Share
Copied to clipboard
\frac{d^{7}d^{4}}{2\times 3}
Divide \frac{d^{7}}{2} by \frac{3}{d^{4}} by multiplying \frac{d^{7}}{2} by the reciprocal of \frac{3}{d^{4}}.
\frac{d^{11}}{2\times 3}
To multiply powers of the same base, add their exponents. Add 7 and 4 to get 11.
\frac{d^{11}}{6}
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{7}d^{4}}{2\times 3})
Divide \frac{d^{7}}{2} by \frac{3}{d^{4}} by multiplying \frac{d^{7}}{2} by the reciprocal of \frac{3}{d^{4}}.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{11}}{2\times 3})
To multiply powers of the same base, add their exponents. Add 7 and 4 to get 11.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{11}}{6})
Multiply 2 and 3 to get 6.
11\times \frac{1}{6}d^{11-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{11}{6}d^{11-1}
Multiply 11 times \frac{1}{6}.
\frac{11}{6}d^{10}
Subtract 1 from 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}