\frac { d ^ { 2 } T ( x ) } { d x ^ { 2 } } + \frac { g ( x ) } { k } = 0
Solve for g (complex solution)
\left\{\begin{matrix}g=0\text{, }&k\neq 0\\g\in \mathrm{C}\text{, }&x=0\text{ and }k\neq 0\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=0\text{, }&k\neq 0\\g\in \mathrm{R}\text{, }&x=0\text{ and }k\neq 0\end{matrix}\right.
Solve for T (complex solution)
T\in \mathrm{C}
\left(x=0\text{ or }g=0\right)\text{ and }k\neq 0
Solve for T
T\in \mathrm{R}
\left(x=0\text{ or }g=0\right)\text{ and }k\neq 0
Quiz
5 problems similar to:
\frac { d ^ { 2 } T ( x ) } { d x ^ { 2 } } + \frac { g ( x ) } { k } = 0
Share
Copied to clipboard
k\frac{\mathrm{d}(Tx)}{\mathrm{d}x^{2}}+gx=0
Multiply both sides of the equation by k.
gx=-k\frac{\mathrm{d}(Tx)}{\mathrm{d}x^{2}}
Subtract k\frac{\mathrm{d}(Tx)}{\mathrm{d}x^{2}} from both sides. Anything subtracted from zero gives its negation.
xg=0
The equation is in standard form.
g=0
Divide 0 by x.
k\frac{\mathrm{d}(Tx)}{\mathrm{d}x^{2}}+gx=0
Multiply both sides of the equation by k.
gx=-k\frac{\mathrm{d}(Tx)}{\mathrm{d}x^{2}}
Subtract k\frac{\mathrm{d}(Tx)}{\mathrm{d}x^{2}} from both sides. Anything subtracted from zero gives its negation.
xg=0
The equation is in standard form.
g=0
Divide 0 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}