Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(d-5\right)\left(d+2\right)}{\left(d-5\right)\left(d+4\right)}+\frac{d^{2}-4}{d^{2}+4d}
Factor the expressions that are not already factored in \frac{d^{2}-3d-10}{d^{2}-d-20}.
\frac{d+2}{d+4}+\frac{d^{2}-4}{d^{2}+4d}
Cancel out d-5 in both numerator and denominator.
\frac{d+2}{d+4}+\frac{d^{2}-4}{d\left(d+4\right)}
Factor d^{2}+4d.
\frac{\left(d+2\right)d}{d\left(d+4\right)}+\frac{d^{2}-4}{d\left(d+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d+4 and d\left(d+4\right) is d\left(d+4\right). Multiply \frac{d+2}{d+4} times \frac{d}{d}.
\frac{\left(d+2\right)d+d^{2}-4}{d\left(d+4\right)}
Since \frac{\left(d+2\right)d}{d\left(d+4\right)} and \frac{d^{2}-4}{d\left(d+4\right)} have the same denominator, add them by adding their numerators.
\frac{d^{2}+2d+d^{2}-4}{d\left(d+4\right)}
Do the multiplications in \left(d+2\right)d+d^{2}-4.
\frac{2d^{2}+2d-4}{d\left(d+4\right)}
Combine like terms in d^{2}+2d+d^{2}-4.
\frac{2d^{2}+2d-4}{d^{2}+4d}
Expand d\left(d+4\right).
\frac{\left(d-5\right)\left(d+2\right)}{\left(d-5\right)\left(d+4\right)}+\frac{d^{2}-4}{d^{2}+4d}
Factor the expressions that are not already factored in \frac{d^{2}-3d-10}{d^{2}-d-20}.
\frac{d+2}{d+4}+\frac{d^{2}-4}{d^{2}+4d}
Cancel out d-5 in both numerator and denominator.
\frac{d+2}{d+4}+\frac{d^{2}-4}{d\left(d+4\right)}
Factor d^{2}+4d.
\frac{\left(d+2\right)d}{d\left(d+4\right)}+\frac{d^{2}-4}{d\left(d+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d+4 and d\left(d+4\right) is d\left(d+4\right). Multiply \frac{d+2}{d+4} times \frac{d}{d}.
\frac{\left(d+2\right)d+d^{2}-4}{d\left(d+4\right)}
Since \frac{\left(d+2\right)d}{d\left(d+4\right)} and \frac{d^{2}-4}{d\left(d+4\right)} have the same denominator, add them by adding their numerators.
\frac{d^{2}+2d+d^{2}-4}{d\left(d+4\right)}
Do the multiplications in \left(d+2\right)d+d^{2}-4.
\frac{2d^{2}+2d-4}{d\left(d+4\right)}
Combine like terms in d^{2}+2d+d^{2}-4.
\frac{2d^{2}+2d-4}{d^{2}+4d}
Expand d\left(d+4\right).