\frac { d ^ { 2 } ( x ^ { 2 } \sin ( 2 x ) e ^ { x } ) } { 2 d x ^ { 2 } } - \frac { d ( x ^ { 2 } e ^ { x } \sin 2 x ) } { d x } + \frac { 5 } { 2 } x ^ { 2 } e ^ { x } \sin 2 x
Factor
e^{x}\left(\frac{3}{2}x^{2}\sin(2x)-2x^{2}\cos(2x)+\frac{1}{2}d\sin(2x)-2x\sin(2x)\right)
Evaluate
\frac{e^{x}\left(4\left(x\sin(x)\right)^{2}-4\left(x\cos(x)\right)^{2}+3x^{2}\sin(2x)+d\sin(2x)-4x\sin(2x)\right)}{2}
Share
Copied to clipboard
factor(\frac{d\sin(2x)e^{x}}{2}-\frac{\mathrm{d}(x^{2}e^{x}\sin(2x))}{\mathrm{d}x}+\frac{5}{2}x^{2}e^{x}\sin(2x))
Cancel out dx^{2} in both numerator and denominator.
factor(\frac{d\sin(2x)e^{x}}{2}-\frac{2\frac{\mathrm{d}(x^{2}e^{x}\sin(2x))}{\mathrm{d}x}}{2}+\frac{5}{2}x^{2}e^{x}\sin(2x))
To add or subtract expressions, expand them to make their denominators the same. Multiply \frac{\mathrm{d}(x^{2}e^{x}\sin(2x))}{\mathrm{d}x} times \frac{2}{2}.
factor(\frac{d\sin(2x)e^{x}-2\frac{\mathrm{d}(x^{2}e^{x}\sin(2x))}{\mathrm{d}x}}{2}+\frac{5}{2}x^{2}e^{x}\sin(2x))
Since \frac{d\sin(2x)e^{x}}{2} and \frac{2\frac{\mathrm{d}(x^{2}e^{x}\sin(2x))}{\mathrm{d}x}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{d\sin(2x)e^{x}-2\frac{\mathrm{d}(x^{2}e^{x}\sin(2x))}{\mathrm{d}x}+5x^{2}e^{x}\sin(2x)}{2}
Factor out \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}