\frac { d ^ { 2 } \psi } { d x ^ { 2 } } = - \frac { 2 m E } { \hbar ^ { 2 } } \psi
Solve for E (complex solution)
\left\{\begin{matrix}E=0\text{, }&ℏ\neq 0\\E\in \mathrm{C}\text{, }&\left(\psi =0\text{ or }m=0\right)\text{ and }ℏ\neq 0\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}m=0\text{, }&ℏ\neq 0\\m\in \mathrm{C}\text{, }&\left(\psi =0\text{ or }E=0\right)\text{ and }ℏ\neq 0\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=0\text{, }&ℏ\neq 0\\E\in \mathrm{R}\text{, }&\left(\psi =0\text{ or }m=0\right)\text{ and }ℏ\neq 0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=0\text{, }&ℏ\neq 0\\m\in \mathrm{R}\text{, }&\left(\psi =0\text{ or }E=0\right)\text{ and }ℏ\neq 0\end{matrix}\right.
Share
Copied to clipboard
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\left(-\frac{2mE}{ℏ^{2}}\right)\psi ℏ^{2}
Multiply both sides of the equation by ℏ^{2}.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi }{ℏ^{2}}ℏ^{2}
Express \left(-\frac{2mE}{ℏ^{2}}\right)\psi as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi ℏ^{2}}{ℏ^{2}}
Express \frac{-2mE\psi }{ℏ^{2}}ℏ^{2} as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=-2Em\psi
Cancel out ℏ^{2} in both numerator and denominator.
-2Em\psi =ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Swap sides so that all variable terms are on the left hand side.
\left(-2m\psi \right)E=0
The equation is in standard form.
E=0
Divide 0 by -2m\psi .
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\left(-\frac{2mE}{ℏ^{2}}\right)\psi ℏ^{2}
Multiply both sides of the equation by ℏ^{2}.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi }{ℏ^{2}}ℏ^{2}
Express \left(-\frac{2mE}{ℏ^{2}}\right)\psi as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi ℏ^{2}}{ℏ^{2}}
Express \frac{-2mE\psi }{ℏ^{2}}ℏ^{2} as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=-2Em\psi
Cancel out ℏ^{2} in both numerator and denominator.
-2Em\psi =ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Swap sides so that all variable terms are on the left hand side.
\left(-2E\psi \right)m=0
The equation is in standard form.
m=0
Divide 0 by -2E\psi .
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\left(-\frac{2mE}{ℏ^{2}}\right)\psi ℏ^{2}
Multiply both sides of the equation by ℏ^{2}.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi }{ℏ^{2}}ℏ^{2}
Express \left(-\frac{2mE}{ℏ^{2}}\right)\psi as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi ℏ^{2}}{ℏ^{2}}
Express \frac{-2mE\psi }{ℏ^{2}}ℏ^{2} as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=-2Em\psi
Cancel out ℏ^{2} in both numerator and denominator.
-2Em\psi =ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Swap sides so that all variable terms are on the left hand side.
\left(-2m\psi \right)E=0
The equation is in standard form.
E=0
Divide 0 by -2m\psi .
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\left(-\frac{2mE}{ℏ^{2}}\right)\psi ℏ^{2}
Multiply both sides of the equation by ℏ^{2}.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi }{ℏ^{2}}ℏ^{2}
Express \left(-\frac{2mE}{ℏ^{2}}\right)\psi as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=\frac{-2mE\psi ℏ^{2}}{ℏ^{2}}
Express \frac{-2mE\psi }{ℏ^{2}}ℏ^{2} as a single fraction.
ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}=-2Em\psi
Cancel out ℏ^{2} in both numerator and denominator.
-2Em\psi =ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Swap sides so that all variable terms are on the left hand side.
\left(-2E\psi \right)m=0
The equation is in standard form.
m=0
Divide 0 by -2E\psi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}