Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(d^{-1}+e^{-1}\right)de}{d^{2}-e^{2}}
Divide d^{-1}+e^{-1} by \frac{d^{2}-e^{2}}{de} by multiplying d^{-1}+e^{-1} by the reciprocal of \frac{d^{2}-e^{2}}{de}.
\frac{\left(d^{-1}d+e^{-1}d\right)e}{d^{2}-e^{2}}
Use the distributive property to multiply d^{-1}+e^{-1} by d.
\frac{\left(1+e^{-1}d\right)e}{d^{2}-e^{2}}
Multiply d^{-1} and d to get 1.
\frac{e+e^{-1}de}{d^{2}-e^{2}}
Use the distributive property to multiply 1+e^{-1}d by e.
\frac{e+d}{d^{2}-e^{2}}
Multiply e^{-1} and e to get 1.
\frac{d+e}{\left(d+e\right)\left(d-e\right)}
Factor the expressions that are not already factored.
\frac{1}{d-e}
Cancel out d+e in both numerator and denominator.
\frac{\left(d^{-1}+e^{-1}\right)de}{d^{2}-e^{2}}
Divide d^{-1}+e^{-1} by \frac{d^{2}-e^{2}}{de} by multiplying d^{-1}+e^{-1} by the reciprocal of \frac{d^{2}-e^{2}}{de}.
\frac{\left(d^{-1}d+e^{-1}d\right)e}{d^{2}-e^{2}}
Use the distributive property to multiply d^{-1}+e^{-1} by d.
\frac{\left(1+e^{-1}d\right)e}{d^{2}-e^{2}}
Multiply d^{-1} and d to get 1.
\frac{e+e^{-1}de}{d^{2}-e^{2}}
Use the distributive property to multiply 1+e^{-1}d by e.
\frac{e+d}{d^{2}-e^{2}}
Multiply e^{-1} and e to get 1.
\frac{d+e}{\left(d+e\right)\left(d-e\right)}
Factor the expressions that are not already factored.
\frac{1}{d-e}
Cancel out d+e in both numerator and denominator.