Solve for d
d=-4
Share
Copied to clipboard
4\left(d+7\right)+48=-3\times 5d
Multiply both sides of the equation by 12, the least common multiple of 3,4.
4d+28+48=-3\times 5d
Use the distributive property to multiply 4 by d+7.
4d+76=-3\times 5d
Add 28 and 48 to get 76.
4d+76=-15d
Multiply -3 and 5 to get -15.
4d+76+15d=0
Add 15d to both sides.
19d+76=0
Combine 4d and 15d to get 19d.
19d=-76
Subtract 76 from both sides. Anything subtracted from zero gives its negation.
d=\frac{-76}{19}
Divide both sides by 19.
d=-4
Divide -76 by 19 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}