Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(\frac{c^{2}v}{5-2\sqrt{6}})
Multiply c and c to get c^{2}.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)})
Rationalize the denominator of \frac{c^{2}v}{5-2\sqrt{6}} by multiplying numerator and denominator by 5+2\sqrt{6}.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{5^{2}-\left(-2\sqrt{6}\right)^{2}})
Consider \left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{25-\left(-2\sqrt{6}\right)^{2}})
Calculate 5 to the power of 2 and get 25.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{25-\left(-2\right)^{2}\left(\sqrt{6}\right)^{2}})
Expand \left(-2\sqrt{6}\right)^{2}.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{25-4\left(\sqrt{6}\right)^{2}})
Calculate -2 to the power of 2 and get 4.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{25-4\times 6})
The square of \sqrt{6} is 6.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{25-24})
Multiply 4 and 6 to get 24.
factor(\frac{c^{2}v\left(5+2\sqrt{6}\right)}{1})
Subtract 24 from 25 to get 1.
factor(c^{2}v\left(5+2\sqrt{6}\right))
Anything divided by one gives itself.
factor(5c^{2}v+2c^{2}v\sqrt{6})
Use the distributive property to multiply c^{2}v by 5+2\sqrt{6}.
c^{2}v\left(5+2\sqrt{6}\right)
Factor out c^{2}v.