Evaluate
\frac{4c\left(c-8\right)}{32c^{4}+c^{2}+c-6}
Expand
\frac{4\left(c^{2}-8c\right)}{32c^{4}+c^{2}+c-6}
Share
Copied to clipboard
\frac{\frac{c-8}{c+3}}{\frac{c-2}{4c}+\frac{8c^{4}}{c\left(c+3\right)}}
Factor the expressions that are not already factored in \frac{8c^{4}}{c^{2}+3c}.
\frac{\frac{c-8}{c+3}}{\frac{c-2}{4c}+\frac{8c^{3}}{c+3}}
Cancel out c in both numerator and denominator.
\frac{\frac{c-8}{c+3}}{\frac{\left(c-2\right)\left(c+3\right)}{4c\left(c+3\right)}+\frac{8c^{3}\times 4c}{4c\left(c+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4c and c+3 is 4c\left(c+3\right). Multiply \frac{c-2}{4c} times \frac{c+3}{c+3}. Multiply \frac{8c^{3}}{c+3} times \frac{4c}{4c}.
\frac{\frac{c-8}{c+3}}{\frac{\left(c-2\right)\left(c+3\right)+8c^{3}\times 4c}{4c\left(c+3\right)}}
Since \frac{\left(c-2\right)\left(c+3\right)}{4c\left(c+3\right)} and \frac{8c^{3}\times 4c}{4c\left(c+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{c-8}{c+3}}{\frac{c^{2}+3c-2c-6+32c^{4}}{4c\left(c+3\right)}}
Do the multiplications in \left(c-2\right)\left(c+3\right)+8c^{3}\times 4c.
\frac{\frac{c-8}{c+3}}{\frac{c^{2}+c-6+32c^{4}}{4c\left(c+3\right)}}
Combine like terms in c^{2}+3c-2c-6+32c^{4}.
\frac{\left(c-8\right)\times 4c\left(c+3\right)}{\left(c+3\right)\left(c^{2}+c-6+32c^{4}\right)}
Divide \frac{c-8}{c+3} by \frac{c^{2}+c-6+32c^{4}}{4c\left(c+3\right)} by multiplying \frac{c-8}{c+3} by the reciprocal of \frac{c^{2}+c-6+32c^{4}}{4c\left(c+3\right)}.
\frac{4c\left(c-8\right)}{32c^{4}+c^{2}+c-6}
Cancel out c+3 in both numerator and denominator.
\frac{4c^{2}-32c}{32c^{4}+c^{2}+c-6}
Use the distributive property to multiply 4c by c-8.
\frac{\frac{c-8}{c+3}}{\frac{c-2}{4c}+\frac{8c^{4}}{c\left(c+3\right)}}
Factor the expressions that are not already factored in \frac{8c^{4}}{c^{2}+3c}.
\frac{\frac{c-8}{c+3}}{\frac{c-2}{4c}+\frac{8c^{3}}{c+3}}
Cancel out c in both numerator and denominator.
\frac{\frac{c-8}{c+3}}{\frac{\left(c-2\right)\left(c+3\right)}{4c\left(c+3\right)}+\frac{8c^{3}\times 4c}{4c\left(c+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4c and c+3 is 4c\left(c+3\right). Multiply \frac{c-2}{4c} times \frac{c+3}{c+3}. Multiply \frac{8c^{3}}{c+3} times \frac{4c}{4c}.
\frac{\frac{c-8}{c+3}}{\frac{\left(c-2\right)\left(c+3\right)+8c^{3}\times 4c}{4c\left(c+3\right)}}
Since \frac{\left(c-2\right)\left(c+3\right)}{4c\left(c+3\right)} and \frac{8c^{3}\times 4c}{4c\left(c+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{c-8}{c+3}}{\frac{c^{2}+3c-2c-6+32c^{4}}{4c\left(c+3\right)}}
Do the multiplications in \left(c-2\right)\left(c+3\right)+8c^{3}\times 4c.
\frac{\frac{c-8}{c+3}}{\frac{c^{2}+c-6+32c^{4}}{4c\left(c+3\right)}}
Combine like terms in c^{2}+3c-2c-6+32c^{4}.
\frac{\left(c-8\right)\times 4c\left(c+3\right)}{\left(c+3\right)\left(c^{2}+c-6+32c^{4}\right)}
Divide \frac{c-8}{c+3} by \frac{c^{2}+c-6+32c^{4}}{4c\left(c+3\right)} by multiplying \frac{c-8}{c+3} by the reciprocal of \frac{c^{2}+c-6+32c^{4}}{4c\left(c+3\right)}.
\frac{4c\left(c-8\right)}{32c^{4}+c^{2}+c-6}
Cancel out c+3 in both numerator and denominator.
\frac{4c^{2}-32c}{32c^{4}+c^{2}+c-6}
Use the distributive property to multiply 4c by c-8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}