Solve for c
c=-\frac{50\left(x-m\right)}{90-x}
x\neq 90
Solve for m
m=-\frac{cx}{50}+\frac{9c}{5}+x
x\neq 90
Graph
Share
Copied to clipboard
\left(-\frac{1}{50}x+\frac{9}{5}\right)\left(c-0\right)=m-x
Multiply both sides of the equation by 2\left(-x+90\right).
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)=m-x
Use the distributive property to multiply -\frac{1}{50}x+\frac{9}{5} by c-0.
-\frac{1}{50}cx+\frac{9}{5}c=-x+m
Reorder the terms.
\left(-\frac{1}{50}x+\frac{9}{5}\right)c=-x+m
Combine all terms containing c.
\left(-\frac{x}{50}+\frac{9}{5}\right)c=m-x
The equation is in standard form.
\frac{\left(-\frac{x}{50}+\frac{9}{5}\right)c}{-\frac{x}{50}+\frac{9}{5}}=\frac{m-x}{-\frac{x}{50}+\frac{9}{5}}
Divide both sides by -\frac{1}{50}x+\frac{9}{5}.
c=\frac{m-x}{-\frac{x}{50}+\frac{9}{5}}
Dividing by -\frac{1}{50}x+\frac{9}{5} undoes the multiplication by -\frac{1}{50}x+\frac{9}{5}.
c=\frac{50\left(m-x\right)}{90-x}
Divide m-x by -\frac{1}{50}x+\frac{9}{5}.
\left(-\frac{1}{50}x+\frac{9}{5}\right)\left(c-0\right)=m-x
Multiply both sides of the equation by 2\left(-x+90\right).
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)=m-x
Use the distributive property to multiply -\frac{1}{50}x+\frac{9}{5} by c-0.
m-x=-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)
Swap sides so that all variable terms are on the left hand side.
m=-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)+x
Add x to both sides.
m=-\frac{1}{50}cx+x+\frac{9}{5}c
Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}