Solve for c (complex solution)
\left\{\begin{matrix}c=0\text{, }&a\neq 5\\c\in \mathrm{C}\text{, }&a=x\text{ and }x\neq 5\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=x\text{, }&x\neq 5\\a\neq 5\text{, }&c=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=0\text{, }&a\neq 5\\c\in \mathrm{R}\text{, }&a=x\text{ and }x\neq 5\end{matrix}\right.
Graph
Share
Copied to clipboard
cx-5c=c\left(a-5\right)
Multiply both sides of the equation by a-5.
cx-5c=ca-5c
Use the distributive property to multiply c by a-5.
cx-5c-ca=-5c
Subtract ca from both sides.
cx-5c-ca+5c=0
Add 5c to both sides.
cx-ca=0
Combine -5c and 5c to get 0.
\left(x-a\right)c=0
Combine all terms containing c.
c=0
Divide 0 by x-a.
cx-5c=c\left(a-5\right)
Variable a cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by a-5.
cx-5c=ca-5c
Use the distributive property to multiply c by a-5.
ca-5c=cx-5c
Swap sides so that all variable terms are on the left hand side.
ca=cx-5c+5c
Add 5c to both sides.
ca=cx
Combine -5c and 5c to get 0.
\frac{ca}{c}=\frac{cx}{c}
Divide both sides by c.
a=\frac{cx}{c}
Dividing by c undoes the multiplication by c.
a=x
Divide cx by c.
a=x\text{, }a\neq 5
Variable a cannot be equal to 5.
cx-5c=c\left(a-5\right)
Multiply both sides of the equation by a-5.
cx-5c=ca-5c
Use the distributive property to multiply c by a-5.
cx-5c-ca=-5c
Subtract ca from both sides.
cx-5c-ca+5c=0
Add 5c to both sides.
cx-ca=0
Combine -5c and 5c to get 0.
\left(x-a\right)c=0
Combine all terms containing c.
c=0
Divide 0 by x-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}