Solve for a
\left\{\begin{matrix}a=-\frac{c+3}{b-3}\text{, }&c\neq -b\text{ and }b\neq 3\\a\neq 1\text{, }&c=-3\text{ and }b=3\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{3a-c-3}{a}\text{, }&a\neq 0\text{ and }a\neq 1\\b\in \mathrm{R}\text{, }&a=0\text{ and }c=-3\end{matrix}\right.
Share
Copied to clipboard
c+ab=3\left(a-1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by a-1, the least common multiple of a-1,1-a.
c+ab=3a-3
Use the distributive property to multiply 3 by a-1.
c+ab-3a=-3
Subtract 3a from both sides.
ab-3a=-3-c
Subtract c from both sides.
\left(b-3\right)a=-3-c
Combine all terms containing a.
\left(b-3\right)a=-c-3
The equation is in standard form.
\frac{\left(b-3\right)a}{b-3}=\frac{-c-3}{b-3}
Divide both sides by b-3.
a=\frac{-c-3}{b-3}
Dividing by b-3 undoes the multiplication by b-3.
a=-\frac{c+3}{b-3}
Divide -c-3 by b-3.
a=-\frac{c+3}{b-3}\text{, }a\neq 1
Variable a cannot be equal to 1.
c+ab=3\left(a-1\right)
Multiply both sides of the equation by a-1, the least common multiple of a-1,1-a.
c+ab=3a-3
Use the distributive property to multiply 3 by a-1.
ab=3a-3-c
Subtract c from both sides.
ab=3a-c-3
The equation is in standard form.
\frac{ab}{a}=\frac{3a-c-3}{a}
Divide both sides by a.
b=\frac{3a-c-3}{a}
Dividing by a undoes the multiplication by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}