Solve for c
c=-30
c=11
Share
Copied to clipboard
\left(6c-36\right)c-30\times 6=\left(5c-30\right)\left(c-5\right)
Variable c cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by 30\left(c-6\right)^{2}, the least common multiple of 5c-30,c^{2}-12c+36,6c-36.
6c^{2}-36c-30\times 6=\left(5c-30\right)\left(c-5\right)
Use the distributive property to multiply 6c-36 by c.
6c^{2}-36c-180=\left(5c-30\right)\left(c-5\right)
Multiply -30 and 6 to get -180.
6c^{2}-36c-180=5c^{2}-55c+150
Use the distributive property to multiply 5c-30 by c-5 and combine like terms.
6c^{2}-36c-180-5c^{2}=-55c+150
Subtract 5c^{2} from both sides.
c^{2}-36c-180=-55c+150
Combine 6c^{2} and -5c^{2} to get c^{2}.
c^{2}-36c-180+55c=150
Add 55c to both sides.
c^{2}+19c-180=150
Combine -36c and 55c to get 19c.
c^{2}+19c-180-150=0
Subtract 150 from both sides.
c^{2}+19c-330=0
Subtract 150 from -180 to get -330.
a+b=19 ab=-330
To solve the equation, factor c^{2}+19c-330 using formula c^{2}+\left(a+b\right)c+ab=\left(c+a\right)\left(c+b\right). To find a and b, set up a system to be solved.
-1,330 -2,165 -3,110 -5,66 -6,55 -10,33 -11,30 -15,22
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -330.
-1+330=329 -2+165=163 -3+110=107 -5+66=61 -6+55=49 -10+33=23 -11+30=19 -15+22=7
Calculate the sum for each pair.
a=-11 b=30
The solution is the pair that gives sum 19.
\left(c-11\right)\left(c+30\right)
Rewrite factored expression \left(c+a\right)\left(c+b\right) using the obtained values.
c=11 c=-30
To find equation solutions, solve c-11=0 and c+30=0.
\left(6c-36\right)c-30\times 6=\left(5c-30\right)\left(c-5\right)
Variable c cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by 30\left(c-6\right)^{2}, the least common multiple of 5c-30,c^{2}-12c+36,6c-36.
6c^{2}-36c-30\times 6=\left(5c-30\right)\left(c-5\right)
Use the distributive property to multiply 6c-36 by c.
6c^{2}-36c-180=\left(5c-30\right)\left(c-5\right)
Multiply -30 and 6 to get -180.
6c^{2}-36c-180=5c^{2}-55c+150
Use the distributive property to multiply 5c-30 by c-5 and combine like terms.
6c^{2}-36c-180-5c^{2}=-55c+150
Subtract 5c^{2} from both sides.
c^{2}-36c-180=-55c+150
Combine 6c^{2} and -5c^{2} to get c^{2}.
c^{2}-36c-180+55c=150
Add 55c to both sides.
c^{2}+19c-180=150
Combine -36c and 55c to get 19c.
c^{2}+19c-180-150=0
Subtract 150 from both sides.
c^{2}+19c-330=0
Subtract 150 from -180 to get -330.
a+b=19 ab=1\left(-330\right)=-330
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as c^{2}+ac+bc-330. To find a and b, set up a system to be solved.
-1,330 -2,165 -3,110 -5,66 -6,55 -10,33 -11,30 -15,22
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -330.
-1+330=329 -2+165=163 -3+110=107 -5+66=61 -6+55=49 -10+33=23 -11+30=19 -15+22=7
Calculate the sum for each pair.
a=-11 b=30
The solution is the pair that gives sum 19.
\left(c^{2}-11c\right)+\left(30c-330\right)
Rewrite c^{2}+19c-330 as \left(c^{2}-11c\right)+\left(30c-330\right).
c\left(c-11\right)+30\left(c-11\right)
Factor out c in the first and 30 in the second group.
\left(c-11\right)\left(c+30\right)
Factor out common term c-11 by using distributive property.
c=11 c=-30
To find equation solutions, solve c-11=0 and c+30=0.
\left(6c-36\right)c-30\times 6=\left(5c-30\right)\left(c-5\right)
Variable c cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by 30\left(c-6\right)^{2}, the least common multiple of 5c-30,c^{2}-12c+36,6c-36.
6c^{2}-36c-30\times 6=\left(5c-30\right)\left(c-5\right)
Use the distributive property to multiply 6c-36 by c.
6c^{2}-36c-180=\left(5c-30\right)\left(c-5\right)
Multiply -30 and 6 to get -180.
6c^{2}-36c-180=5c^{2}-55c+150
Use the distributive property to multiply 5c-30 by c-5 and combine like terms.
6c^{2}-36c-180-5c^{2}=-55c+150
Subtract 5c^{2} from both sides.
c^{2}-36c-180=-55c+150
Combine 6c^{2} and -5c^{2} to get c^{2}.
c^{2}-36c-180+55c=150
Add 55c to both sides.
c^{2}+19c-180=150
Combine -36c and 55c to get 19c.
c^{2}+19c-180-150=0
Subtract 150 from both sides.
c^{2}+19c-330=0
Subtract 150 from -180 to get -330.
c=\frac{-19±\sqrt{19^{2}-4\left(-330\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and -330 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-19±\sqrt{361-4\left(-330\right)}}{2}
Square 19.
c=\frac{-19±\sqrt{361+1320}}{2}
Multiply -4 times -330.
c=\frac{-19±\sqrt{1681}}{2}
Add 361 to 1320.
c=\frac{-19±41}{2}
Take the square root of 1681.
c=\frac{22}{2}
Now solve the equation c=\frac{-19±41}{2} when ± is plus. Add -19 to 41.
c=11
Divide 22 by 2.
c=-\frac{60}{2}
Now solve the equation c=\frac{-19±41}{2} when ± is minus. Subtract 41 from -19.
c=-30
Divide -60 by 2.
c=11 c=-30
The equation is now solved.
\left(6c-36\right)c-30\times 6=\left(5c-30\right)\left(c-5\right)
Variable c cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by 30\left(c-6\right)^{2}, the least common multiple of 5c-30,c^{2}-12c+36,6c-36.
6c^{2}-36c-30\times 6=\left(5c-30\right)\left(c-5\right)
Use the distributive property to multiply 6c-36 by c.
6c^{2}-36c-180=\left(5c-30\right)\left(c-5\right)
Multiply -30 and 6 to get -180.
6c^{2}-36c-180=5c^{2}-55c+150
Use the distributive property to multiply 5c-30 by c-5 and combine like terms.
6c^{2}-36c-180-5c^{2}=-55c+150
Subtract 5c^{2} from both sides.
c^{2}-36c-180=-55c+150
Combine 6c^{2} and -5c^{2} to get c^{2}.
c^{2}-36c-180+55c=150
Add 55c to both sides.
c^{2}+19c-180=150
Combine -36c and 55c to get 19c.
c^{2}+19c=150+180
Add 180 to both sides.
c^{2}+19c=330
Add 150 and 180 to get 330.
c^{2}+19c+\left(\frac{19}{2}\right)^{2}=330+\left(\frac{19}{2}\right)^{2}
Divide 19, the coefficient of the x term, by 2 to get \frac{19}{2}. Then add the square of \frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+19c+\frac{361}{4}=330+\frac{361}{4}
Square \frac{19}{2} by squaring both the numerator and the denominator of the fraction.
c^{2}+19c+\frac{361}{4}=\frac{1681}{4}
Add 330 to \frac{361}{4}.
\left(c+\frac{19}{2}\right)^{2}=\frac{1681}{4}
Factor c^{2}+19c+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{19}{2}\right)^{2}}=\sqrt{\frac{1681}{4}}
Take the square root of both sides of the equation.
c+\frac{19}{2}=\frac{41}{2} c+\frac{19}{2}=-\frac{41}{2}
Simplify.
c=11 c=-30
Subtract \frac{19}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}