Solve for T
T=\frac{9c}{5}+32
Solve for c
c=\frac{5\left(T-32\right)}{9}
Share
Copied to clipboard
9c=5\left(T-32\right)
Multiply both sides of the equation by 45, the least common multiple of 5,9.
9c=5T-160
Use the distributive property to multiply 5 by T-32.
5T-160=9c
Swap sides so that all variable terms are on the left hand side.
5T=9c+160
Add 160 to both sides.
\frac{5T}{5}=\frac{9c+160}{5}
Divide both sides by 5.
T=\frac{9c+160}{5}
Dividing by 5 undoes the multiplication by 5.
T=\frac{9c}{5}+32
Divide 9c+160 by 5.
9c=5\left(T-32\right)
Multiply both sides of the equation by 45, the least common multiple of 5,9.
9c=5T-160
Use the distributive property to multiply 5 by T-32.
\frac{9c}{9}=\frac{5T-160}{9}
Divide both sides by 9.
c=\frac{5T-160}{9}
Dividing by 9 undoes the multiplication by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}