Skip to main content
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

200\left(c^{2}-a^{2}\right)=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 200bc, the least common multiple of bc,200.
200c^{2}-200a^{2}=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply 200 by c^{2}-a^{2}.
200c^{2}-200a^{2}=bc\left(100+10^{2}-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(100+100-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(200-\frac{\sqrt{3}}{2}\right)
Add 100 and 100 to get 200.
200c^{2}-200a^{2}=200bc+bc\left(-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply bc by 200-\frac{\sqrt{3}}{2}.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}}{2}c
Express b\left(-\frac{\sqrt{3}}{2}\right) as a single fraction.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}c}{2}
Express \frac{-b\sqrt{3}}{2}c as a single fraction.
200bc+\frac{-b\sqrt{3}c}{2}=200c^{2}-200a^{2}
Swap sides so that all variable terms are on the left hand side.
400bc-b\sqrt{3}c=400c^{2}-400a^{2}
Multiply both sides of the equation by 2.
\left(400c-\sqrt{3}c\right)b=400c^{2}-400a^{2}
Combine all terms containing b.
\left(-\sqrt{3}c+400c\right)b=400c^{2}-400a^{2}
The equation is in standard form.
\frac{\left(-\sqrt{3}c+400c\right)b}{-\sqrt{3}c+400c}=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Divide both sides by 400c-\sqrt{3}c.
b=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Dividing by 400c-\sqrt{3}c undoes the multiplication by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}
Divide 400\left(a+c\right)\left(-a+c\right) by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}\text{, }b\neq 0
Variable b cannot be equal to 0.
200\left(c^{2}-a^{2}\right)=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 200bc, the least common multiple of bc,200.
200c^{2}-200a^{2}=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply 200 by c^{2}-a^{2}.
200c^{2}-200a^{2}=bc\left(100+10^{2}-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(100+100-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(200-\frac{\sqrt{3}}{2}\right)
Add 100 and 100 to get 200.
200c^{2}-200a^{2}=200bc+bc\left(-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply bc by 200-\frac{\sqrt{3}}{2}.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}}{2}c
Express b\left(-\frac{\sqrt{3}}{2}\right) as a single fraction.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}c}{2}
Express \frac{-b\sqrt{3}}{2}c as a single fraction.
200bc+\frac{-b\sqrt{3}c}{2}=200c^{2}-200a^{2}
Swap sides so that all variable terms are on the left hand side.
400bc-b\sqrt{3}c=400c^{2}-400a^{2}
Multiply both sides of the equation by 2.
\left(400c-\sqrt{3}c\right)b=400c^{2}-400a^{2}
Combine all terms containing b.
\left(-\sqrt{3}c+400c\right)b=400c^{2}-400a^{2}
The equation is in standard form.
\frac{\left(-\sqrt{3}c+400c\right)b}{-\sqrt{3}c+400c}=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Divide both sides by 400c-\sqrt{3}c.
b=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Dividing by 400c-\sqrt{3}c undoes the multiplication by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}
Divide 400\left(a+c\right)\left(-a+c\right) by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}\text{, }b\neq 0
Variable b cannot be equal to 0.