Solve for b (complex solution)
b=\frac{400\left(\sqrt{3}+400\right)\left(c^{2}-a^{2}\right)}{159997c}
c\neq a\text{ and }c\neq 0\text{ and }c\neq -a
Solve for b
b=\frac{400\left(\sqrt{3}+400\right)\left(c^{2}-a^{2}\right)}{159997c}
c\neq 0\text{ and }|c|\neq |a|
Solve for a (complex solution)
a=-\frac{\sqrt{c}\sqrt{\sqrt{3}b+400c-400b}}{20}
a=\frac{\sqrt{c}\sqrt{\sqrt{3}b+400c-400b}}{20}\text{, }b\neq 0\text{ and }c\neq 0
Solve for a
a=\frac{\sqrt{c\left(\sqrt{3}b+400c-400b\right)}}{20}
a=-\frac{\sqrt{c\left(\sqrt{3}b+400c-400b\right)}}{20}\text{, }\left(c<0\text{ or }c\geq -\frac{\sqrt{3}b}{400}+b\right)\text{ and }b\neq 0\text{ and }\left(c>0\text{ or }c\leq -\frac{\sqrt{3}b}{400}+b\right)\text{ and }c\neq 0
Share
Copied to clipboard
200\left(c^{2}-a^{2}\right)=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 200bc, the least common multiple of bc,200.
200c^{2}-200a^{2}=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply 200 by c^{2}-a^{2}.
200c^{2}-200a^{2}=bc\left(100+10^{2}-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(100+100-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(200-\frac{\sqrt{3}}{2}\right)
Add 100 and 100 to get 200.
200c^{2}-200a^{2}=200bc+bc\left(-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply bc by 200-\frac{\sqrt{3}}{2}.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}}{2}c
Express b\left(-\frac{\sqrt{3}}{2}\right) as a single fraction.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}c}{2}
Express \frac{-b\sqrt{3}}{2}c as a single fraction.
200bc+\frac{-b\sqrt{3}c}{2}=200c^{2}-200a^{2}
Swap sides so that all variable terms are on the left hand side.
400bc-b\sqrt{3}c=400c^{2}-400a^{2}
Multiply both sides of the equation by 2.
\left(400c-\sqrt{3}c\right)b=400c^{2}-400a^{2}
Combine all terms containing b.
\left(-\sqrt{3}c+400c\right)b=400c^{2}-400a^{2}
The equation is in standard form.
\frac{\left(-\sqrt{3}c+400c\right)b}{-\sqrt{3}c+400c}=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Divide both sides by 400c-\sqrt{3}c.
b=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Dividing by 400c-\sqrt{3}c undoes the multiplication by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}
Divide 400\left(a+c\right)\left(-a+c\right) by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}\text{, }b\neq 0
Variable b cannot be equal to 0.
200\left(c^{2}-a^{2}\right)=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 200bc, the least common multiple of bc,200.
200c^{2}-200a^{2}=bc\left(10^{2}+10^{2}-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply 200 by c^{2}-a^{2}.
200c^{2}-200a^{2}=bc\left(100+10^{2}-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(100+100-\frac{\sqrt{3}}{2}\right)
Calculate 10 to the power of 2 and get 100.
200c^{2}-200a^{2}=bc\left(200-\frac{\sqrt{3}}{2}\right)
Add 100 and 100 to get 200.
200c^{2}-200a^{2}=200bc+bc\left(-\frac{\sqrt{3}}{2}\right)
Use the distributive property to multiply bc by 200-\frac{\sqrt{3}}{2}.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}}{2}c
Express b\left(-\frac{\sqrt{3}}{2}\right) as a single fraction.
200c^{2}-200a^{2}=200bc+\frac{-b\sqrt{3}c}{2}
Express \frac{-b\sqrt{3}}{2}c as a single fraction.
200bc+\frac{-b\sqrt{3}c}{2}=200c^{2}-200a^{2}
Swap sides so that all variable terms are on the left hand side.
400bc-b\sqrt{3}c=400c^{2}-400a^{2}
Multiply both sides of the equation by 2.
\left(400c-\sqrt{3}c\right)b=400c^{2}-400a^{2}
Combine all terms containing b.
\left(-\sqrt{3}c+400c\right)b=400c^{2}-400a^{2}
The equation is in standard form.
\frac{\left(-\sqrt{3}c+400c\right)b}{-\sqrt{3}c+400c}=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Divide both sides by 400c-\sqrt{3}c.
b=\frac{400\left(c-a\right)\left(a+c\right)}{-\sqrt{3}c+400c}
Dividing by 400c-\sqrt{3}c undoes the multiplication by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}
Divide 400\left(a+c\right)\left(-a+c\right) by 400c-\sqrt{3}c.
b=\frac{400\left(\sqrt{3}+400\right)\left(c-a\right)\left(a+c\right)}{159997c}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}