Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(c^{2}+8c\right)\left(c^{2}+1c-72\right)}{\left(c^{2}-64\right)\left(c^{2}+4c-45\right)}
Divide \frac{c^{2}+8c}{c^{2}-64} by \frac{c^{2}+4c-45}{c^{2}+1c-72} by multiplying \frac{c^{2}+8c}{c^{2}-64} by the reciprocal of \frac{c^{2}+4c-45}{c^{2}+1c-72}.
\frac{c\left(c-8\right)\left(c+8\right)\left(c+9\right)}{\left(c-8\right)\left(c-5\right)\left(c+8\right)\left(c+9\right)}
Factor the expressions that are not already factored.
\frac{c}{c-5}
Cancel out \left(c-8\right)\left(c+8\right)\left(c+9\right) in both numerator and denominator.
\frac{\left(c^{2}+8c\right)\left(c^{2}+1c-72\right)}{\left(c^{2}-64\right)\left(c^{2}+4c-45\right)}
Divide \frac{c^{2}+8c}{c^{2}-64} by \frac{c^{2}+4c-45}{c^{2}+1c-72} by multiplying \frac{c^{2}+8c}{c^{2}-64} by the reciprocal of \frac{c^{2}+4c-45}{c^{2}+1c-72}.
\frac{c\left(c-8\right)\left(c+8\right)\left(c+9\right)}{\left(c-8\right)\left(c-5\right)\left(c+8\right)\left(c+9\right)}
Factor the expressions that are not already factored.
\frac{c}{c-5}
Cancel out \left(c-8\right)\left(c+8\right)\left(c+9\right) in both numerator and denominator.