Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)}
Factor c^{3}-8. Factor 8-c^{3}.
\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c^{2}+2c+4\right) and \left(c-2\right)\left(-c^{2}-2c-4\right) is \left(c-2\right)\left(c^{2}+2c+4\right). Multiply \frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)} times \frac{-1}{-1}.
\frac{c^{2}+3c+1-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Since \frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)} and \frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)} have the same denominator, add them by adding their numerators.
\frac{c^{2}+3c+1-c-3}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Do the multiplications in c^{2}+3c+1-\left(c+3\right).
\frac{c^{2}+2c-2}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Combine like terms in c^{2}+3c+1-c-3.
\frac{c^{2}+2c-2}{c^{3}-8}
Expand \left(c-2\right)\left(c^{2}+2c+4\right).
\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)}
Factor c^{3}-8. Factor 8-c^{3}.
\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c^{2}+2c+4\right) and \left(c-2\right)\left(-c^{2}-2c-4\right) is \left(c-2\right)\left(c^{2}+2c+4\right). Multiply \frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)} times \frac{-1}{-1}.
\frac{c^{2}+3c+1-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Since \frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)} and \frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)} have the same denominator, add them by adding their numerators.
\frac{c^{2}+3c+1-c-3}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Do the multiplications in c^{2}+3c+1-\left(c+3\right).
\frac{c^{2}+2c-2}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Combine like terms in c^{2}+3c+1-c-3.
\frac{c^{2}+2c-2}{c^{3}-8}
Expand \left(c-2\right)\left(c^{2}+2c+4\right).