Evaluate
\frac{2-2c-c^{2}}{8-c^{3}}
Expand
-\frac{2-2c-c^{2}}{c^{3}-8}
Share
Copied to clipboard
\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)}
Factor c^{3}-8. Factor 8-c^{3}.
\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c^{2}+2c+4\right) and \left(c-2\right)\left(-c^{2}-2c-4\right) is \left(c-2\right)\left(c^{2}+2c+4\right). Multiply \frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)} times \frac{-1}{-1}.
\frac{c^{2}+3c+1-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Since \frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)} and \frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)} have the same denominator, add them by adding their numerators.
\frac{c^{2}+3c+1-c-3}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Do the multiplications in c^{2}+3c+1-\left(c+3\right).
\frac{c^{2}+2c-2}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Combine like terms in c^{2}+3c+1-c-3.
\frac{c^{2}+2c-2}{c^{3}-8}
Expand \left(c-2\right)\left(c^{2}+2c+4\right).
\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)}
Factor c^{3}-8. Factor 8-c^{3}.
\frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)}+\frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c^{2}+2c+4\right) and \left(c-2\right)\left(-c^{2}-2c-4\right) is \left(c-2\right)\left(c^{2}+2c+4\right). Multiply \frac{c+3}{\left(c-2\right)\left(-c^{2}-2c-4\right)} times \frac{-1}{-1}.
\frac{c^{2}+3c+1-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Since \frac{c^{2}+3c+1}{\left(c-2\right)\left(c^{2}+2c+4\right)} and \frac{-\left(c+3\right)}{\left(c-2\right)\left(c^{2}+2c+4\right)} have the same denominator, add them by adding their numerators.
\frac{c^{2}+3c+1-c-3}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Do the multiplications in c^{2}+3c+1-\left(c+3\right).
\frac{c^{2}+2c-2}{\left(c-2\right)\left(c^{2}+2c+4\right)}
Combine like terms in c^{2}+3c+1-c-3.
\frac{c^{2}+2c-2}{c^{3}-8}
Expand \left(c-2\right)\left(c^{2}+2c+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}