Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Factor 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(12-c\right)^{2} and c\left(-c+12\right) is c\left(-c+12\right)\left(-c+12\right)^{2}. Multiply \frac{c+12}{\left(12-c\right)^{2}} times \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Multiply \frac{12}{c\left(-c+12\right)} times \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Since \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} and \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Do the multiplications in \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Combine like terms in -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Factor the expressions that are not already factored in \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Cancel out -c+12 in both numerator and denominator.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Expand c\left(-c+12\right)^{2}.
\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Factor 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(12-c\right)^{2} and c\left(-c+12\right) is c\left(-c+12\right)\left(-c+12\right)^{2}. Multiply \frac{c+12}{\left(12-c\right)^{2}} times \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Multiply \frac{12}{c\left(-c+12\right)} times \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Since \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} and \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Do the multiplications in \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Combine like terms in -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Factor the expressions that are not already factored in \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Cancel out -c+12 in both numerator and denominator.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Expand c\left(-c+12\right)^{2}.