Solve for b
b=-\frac{4}{3}+\frac{7}{3y}
y\neq 0\text{ and }y\neq -2
Solve for y
y=\frac{7}{3b+4}
b\neq -\frac{5}{2}\text{ and }b\neq -\frac{4}{3}
Graph
Share
Copied to clipboard
3\left(by-5\right)=\left(y+2\right)\left(-4\right)
Multiply both sides of the equation by 3\left(y+2\right), the least common multiple of y+2,3.
3by-15=\left(y+2\right)\left(-4\right)
Use the distributive property to multiply 3 by by-5.
3by-15=-4y-8
Use the distributive property to multiply y+2 by -4.
3by=-4y-8+15
Add 15 to both sides.
3by=-4y+7
Add -8 and 15 to get 7.
3yb=7-4y
The equation is in standard form.
\frac{3yb}{3y}=\frac{7-4y}{3y}
Divide both sides by 3y.
b=\frac{7-4y}{3y}
Dividing by 3y undoes the multiplication by 3y.
b=-\frac{4}{3}+\frac{7}{3y}
Divide -4y+7 by 3y.
3\left(by-5\right)=\left(y+2\right)\left(-4\right)
Variable y cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 3\left(y+2\right), the least common multiple of y+2,3.
3by-15=\left(y+2\right)\left(-4\right)
Use the distributive property to multiply 3 by by-5.
3by-15=-4y-8
Use the distributive property to multiply y+2 by -4.
3by-15+4y=-8
Add 4y to both sides.
3by+4y=-8+15
Add 15 to both sides.
3by+4y=7
Add -8 and 15 to get 7.
\left(3b+4\right)y=7
Combine all terms containing y.
\frac{\left(3b+4\right)y}{3b+4}=\frac{7}{3b+4}
Divide both sides by 4+3b.
y=\frac{7}{3b+4}
Dividing by 4+3b undoes the multiplication by 4+3b.
y=\frac{7}{3b+4}\text{, }y\neq -2
Variable y cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}