Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{bx}{x^{2}+1}\text{, }&x\neq 0\text{ and }b\neq 0\text{ and }x\neq i\text{ and }x\neq -i\\a\neq 0\text{, }&\left(x=-i\text{ or }x=i\right)\text{ and }b=0\end{matrix}\right.
Solve for a
a=\frac{bx}{x^{2}+1}
x\neq 0\text{ and }b\neq 0
Solve for b
b=ax+\frac{a}{x}
x\neq 0\text{ and }a\neq 0
Graph
Share
Copied to clipboard
bx=ax^{2}+a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
ax^{2}+a=bx
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+1\right)a=bx
Combine all terms containing a.
\frac{\left(x^{2}+1\right)a}{x^{2}+1}=\frac{bx}{x^{2}+1}
Divide both sides by x^{2}+1.
a=\frac{bx}{x^{2}+1}
Dividing by x^{2}+1 undoes the multiplication by x^{2}+1.
a=\frac{bx}{x^{2}+1}\text{, }a\neq 0
Variable a cannot be equal to 0.
bx=ax^{2}+a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
ax^{2}+a=bx
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+1\right)a=bx
Combine all terms containing a.
\frac{\left(x^{2}+1\right)a}{x^{2}+1}=\frac{bx}{x^{2}+1}
Divide both sides by x^{2}+1.
a=\frac{bx}{x^{2}+1}
Dividing by x^{2}+1 undoes the multiplication by x^{2}+1.
a=\frac{bx}{x^{2}+1}\text{, }a\neq 0
Variable a cannot be equal to 0.
bx=ax^{2}+a
Multiply both sides of the equation by a.
xb=ax^{2}+a
The equation is in standard form.
\frac{xb}{x}=\frac{ax^{2}+a}{x}
Divide both sides by x.
b=\frac{ax^{2}+a}{x}
Dividing by x undoes the multiplication by x.
b=ax+\frac{a}{x}
Divide ax^{2}+a by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}